30 resultados para Sustained tolerance
em Indian Institute of Science - Bangalore - Índia
Resumo:
A strain of Thiobacillus ferrooxidans was adapted to grow at higher concentrations of copper by single step culturing in the presence of 20 g/L (0.314 mol/L) cupric ions added to 9K medium. Exposure to copper results in change in the surface chemistry of the microorganism. The isoelectric point of the adapted strain (pI=4.7) was observed to be at a higher pH than that of the wild unadapted strain(pI=2.0). Compared to the wild strain, the copper adapted strain was found to be more hydrophobic and showed enhanced attachment efficiency to the pyrite mineral. The copper adsorption ability of the adapted strain was also found to be higher than that of the wild strain. Fourier transform infrared spectroscopy of adapted cells suggested that a proteinaceous new cell surface component is synthesized by the adapted strain. Treatment of adapted cells with proteinase-K, resulted in complete loss of tolerance to copper, reduction in copper adsorption and hydrophobicity of the adapted cells. These observations strongly suggest a role played by cell surface modifications of Thiobacillus ferrooxidans in imparting the copper tolerance to the cells and bioleaching of sulphide minerals.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Multiprocessor systems which afford a high degree of parallelism are used in a variety of applications. The extremely stringent reliability requirement has made the provision of fault-tolerance an important aspect in the design of such systems. This paper presents a review of the various approaches towards tolerating hardware faults in multiprocessor systems. It. emphasizes the basic concepts of fault tolerant design and the various problems to be taken care of by the designer. An indepth survey of the various models, techniques and methods for fault diagnosis is given. Further, we consider the strategies for fault-tolerance in specialized multiprocessor architectures which have the ability of dynamic reconfiguration and are suited to VLSI implementation. An analysis of the state-óf-the-art is given which points out the major aspects of fault-tolerance in such architectures.
Resumo:
Rifampicin and its derivatives are at the forefront of the current standard chemotherapeutic regimen for active tuberculosis; they act by inhibiting the transcription activity of prokaryotic RNA polymerase. Rifampicin is believed to interact with the beta subunit of RNA polymerase. However, it has been observed that protein-protein interactions with RNA polymerase core enzyme lead to its reduced susceptibility to rifampicin. This mechanism became more diversified with the discovery of RbpA, a novel RNA polymerase-binding protein, in Streptomyces coelicolor that could mitigate the effect of rifampicin on RNA polymerase activity. MsRbpA is a homologue of RbpA in Mycobacterium smegmatis. On deciphering the role of MsRbpA in M. smegmatis we found that it interacts with RNA polymerase and increases the rifampicin tolerance levels, both in vitro and in vivo. It interacts with the beta subunit of RNA polymerase. However, it was found to be incapable of rescuing rifampicin-resistant RNA polymerases in the presence of rifampicin at the respective IC50.
Resumo:
Direct injection of genomic DNA from salt tolerant cv. Pokkali into developing floral tillers on IR20 produced transgenic seeds similar to Pokkali in husk colour and which germinated well in 0.2 M NaCl and had a 4-6-fold higher proline content.
Resumo:
Diabetes is a chronic disease requiring continuous medical supervision and patient education to prevent acute secondary complications. In this study, we have harnessed the inherent property of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid formation, to generate a form that exhibits controlled and sustained release for extended periods. Administration of a single dose of the insulin oligomer, defined here as the supramolecular insulin assembly II (SIA-II), to experimental animals rendered diabetic by streptozotocin or alloxan, released the hormone capable of maintaining physiologic glucose levels for > 120 days for bovine and > 140 days for recombinant human insulin without fasting hypoglycemia. Moreover, the novel SIA-II described here not only improved the glycemic control, but also reduced the extent of secondary diabetic complications.
Resumo:
In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
The propagation constant of a superconducting microstrip transmission delay line is evaluated using the spectral domain immitance approach, modelling the superconductor as a surface current having an equivalent surface impedance found through the complex resistive boundary condition. The sensitivity approach is used to study the beta variations with substrate parameters and film characteristics. Results show that the surface impedance does not have much influence on beta sensitivities with respect to epsilon r, W and h. However, it can be observed that the surface impedance plays a crucial role in determining the optimum design.
Resumo:
Relentless CMOS scaling coupled with lower design tolerances is making ICs increasingly susceptible to wear-out related permanent faults and transient faults, necessitating on-chip fault tolerance in future chip microprocessors (CMPs). In this paper we introduce a new energy-efficient fault-tolerant CMP architecture known as Redundant Execution using Critical Value Forwarding (RECVF). RECVF is based on two observations: (i) forwarding critical instruction results from the leading to the trailing core enables the latter to execute faster, and (ii) this speedup can be exploited to reduce energy consumption by operating the trailing core at a lower voltage-frequency level. Our evaluation shows that RECVF consumes 37% less energy than conventional dual modular redundant (DMR) execution of a program. It consumes only 1.26 times the energy of a non-fault-tolerant baseline and has a performance overhead of just 1.2%.
Resumo:
Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly (methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO3 particles followed by core removal with ethylene-diaminetetraacetic add (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A strain of Thiobacillus ferrooxidans MAL-4-1 was adapted to grow at higher concentrations of copper by repeated subculturing in the presence of increasing levels of added cupric ions in 9K medium. The strains adapted to copper were found to be more efficient in bioleaching of copper from concentrates. When copper tolerant strains were back cultured repeatedly in 9K medium without cupric ions, the initially developed metal tolerance was observed to be lost. This indicates that the copper tolerance developed is stress-dependent and not a permanent trait of the adapted strain.
Resumo:
Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.
Resumo:
The influence of different concentrations of base metal ions, such as CU2+, Zn2+ and Fe3+, when present either alone or in different possible binary and ternary combinations in a 9K medium, on the fel rous ion oxidation ability of Thiobacillus ferrooxidans was studied. Levels and degree of toxicity of these ions have been quantified in terms of toxicity index (TI). Copper and zinc tolerant strains of the bacteria were developed through serial subculturing and their activity tested in the presence of the above metal ions in comparison with the behavior of wild unadapted cells under similar conditions. Copper tolerant strains (25 g/L Cu2+) were found to be more efficient in the bioleaching of both copper and zinc concentrates than wild unadapted strains, while zinc tolerant strains (40 g/L Zn2+) exhibited better leaching efficiency only in the bioleaching of sphalerite concentrates. The significance and relevance of multi-metal ion tolerance in Thiobacillus ferrooxidans has been highlighted with respect to bioleaching of sulphide mineral concentrates. (C) 1997 Published by Elsevier Science Ltd.
Resumo:
The effect of NaCl on total peroxidase activity, induction of isoperoxidases and lipid peroxidation in 5-day-old seedlings of two contrasting genotypes of Setaria italica L. (Prasad, a salt tolerant cultivar and Lepakshi, a salt susceptible cultivar), was studied. Total peroxidase activity increased under NaCl salinity and the degree of elevation in the activity was salt concentration dependent. Nevertheless, a greater activity was recorded in the tolerant cultivar (cv Prasad) compared to the susceptible (cv Lepakshi) one in all days of sampling. Further, the pattern of isoperoxidases was modified during stress conditions as evident from the electrophoregrams. Although, five acidic isoforms were detected in both cultivars, differences were found between the cultivars. Furthermore, it was observed that acidic isoperoxidases were strongly expressed and an acidic isoperoxidase, A(3p) (27 kDa) is specifically found in the tolerant cultivar (cv Prasad) under NaCl stress. This isoform was partially purified and found to be thermostable with pr 5.5 and the optimum pH 7.4. A close correlation exists between the rate of lipid peroxidation in terms of malonaldehyde (MDA) content and total peroxidase activity per gram fresh weight with salt tolerance of the two cultivars. The tolerant cultivar (cv Prasad) had low MDA content and high total peroxidase activity than the susceptible variety (cv Lepakshi) during salinity stress. (C) 1999 Published by Elsevier Science Ireland Ltd. All rights reserved.