1 resultado para Sustainable Regional Development
em Indian Institute of Science - Bangalore - Índia
Filtro por publicador
- University of Cagliari UniCA Eprints (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (17)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (10)
- Archive of European Integration (62)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (12)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (30)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (3)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (70)
- CORA - Cork Open Research Archive - University College Cork - Ireland (10)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Memoria Académica - FaHCE, UNLP - Argentina (26)
- Ministerio de Cultura, Spain (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (38)
- Queensland University of Technology - ePrints Archive (180)
- RDBU - Repositório Digital da Biblioteca da Unisinos (4)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (53)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (26)
- Universidad Politécnica de Madrid (16)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (33)
- Universidade Federal do Rio Grande do Norte (UFRN) (30)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (4)
- University of Canberra Research Repository - Australia (2)
- University of Michigan (10)
- University of Queensland eSpace - Australia (9)
- University of Washington (1)
- WestminsterResearch - UK (5)
Resumo:
Land cover (LC) refers to what is actually present on the ground and provide insights into the underlying solution for improving the conditions of many issues, from water pollution to sustainable economic development. One of the greatest challenges of modeling LC changes using remotely sensed (RS) data is of scale-resolution mismatch: that the spatial resolution of detail is less than what is required, and that this sub-pixel level heterogeneity is important but not readily knowable. However, many pixels consist of a mixture of multiple classes. The solution to mixed pixel problem typically centers on soft classification techniques that are used to estimate the proportion of a certain class within each pixel. However, the spatial distribution of these class components within the pixel remains unknown. This study investigates Orthogonal Subspace Projection - an unmixing technique and uses pixel-swapping algorithm for predicting the spatial distribution of LC at sub-pixel resolution. Both the algorithms are applied on many simulated and actual satellite images for validation. The accuracy on the simulated images is ~100%, while IRS LISS-III and MODIS data show accuracy of 76.6% and 73.02% respectively. This demonstrates the relevance of these techniques for applications such as urban-nonurban, forest-nonforest classification studies etc.