102 resultados para Support Vector Machine
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, downscaling models are developed using a support vector machine (SVM) for obtaining projections of monthly mean maximum and minimum temperatures (T-max and T-min) to river-basin scale. The effectiveness of the model is demonstrated through application to downscale the predictands for the catchment of the Malaprabha reservoir in India, which is considered to be a climatically sensitive region. The probable predictor variables are extracted from (1) the National Centers for Environmental Prediction (NCEP) reanalysis dataset for the period 1978-2000, and (2) the simulations from the third-generation Canadian Coupled Global Climate Model (CGCM3) for emission scenarios A1B, A2, B1 and COMMIT for the period 1978-2100. The predictor variables are classified into three groups, namely A, B and C. Large-scale atmospheric variables Such as air temperature, zonal and meridional wind velocities at 925 nib which are often used for downscaling temperature are considered as predictors in Group A. Surface flux variables such as latent heat (LH), sensible heat, shortwave radiation and longwave radiation fluxes, which control temperature of the Earth's surface are tried as plausible predictors in Group B. Group C comprises of all the predictor variables in both the Groups A and B. The scatter plots and cross-correlations are used for verifying the reliability of the simulation of the predictor variables by the CGCM3 and to Study the predictor-predictand relationships. The impact of trend in predictor variables on downscaled temperature was studied. The predictor, air temperature at 925 mb showed an increasing trend, while the rest of the predictors showed no trend. The performance of the SVM models that are developed, one for each combination of predictor group, predictand, calibration period and location-based stratification (land, land and ocean) of climate variables, was evaluated. In general, the models which use predictor variables pertaining to land surface improved the performance of SVM models for downscaling T-max and T-min
Resumo:
Screening and early identification of primary immunodeficiency disease (PID) genes is a major challenge for physicians. Many resources have catalogued molecular alterations in known PID genes along with their associated clinical and immunological phenotypes. However, these resources do not assist in identifying candidate PID genes. We have recently developed a platform designated Resource of Asian PDIs, which hosts information pertaining to molecular alterations, protein-protein interaction networks, mouse studies and microarray gene expression profiling of all known PID genes. Using this resource as a discovery tool, we describe the development of an algorithm for prediction of candidate PID genes. Using a support vector machine learning approach, we have predicted 1442 candidate PID genes using 69 binary features of 148 known PID genes and 3162 non-PID genes as a training data set. The power of this approach is illustrated by the fact that six of the predicted genes have recently been experimentally confirmed to be PID genes. The remaining genes in this predicted data set represent attractive candidates for testing in patients where the etiology cannot be ascribed to any of the known PID genes.
Resumo:
The determination of the overconsolidation ratio (OCR) of clay deposits is an important task in geotechnical engineering practice. This paper examines the potential of a support vector machine (SVM) for predicting the OCR of clays from piezocone penetration test data. SVM is a statistical learning theory based on a structural risk minimization principle that minimizes both error and weight terms. The five input variables used for the SVM model for prediction of OCR are the corrected cone resistance (qt), vertical total stress (sigmav), hydrostatic pore pressure (u0), pore pressure at the cone tip (u1), and the pore pressure just above the cone base (u2). Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. From the sensitivity analysis, it is clear that qt=primary in situ data influenced by OCR followed by sigmav, u0, u2, and u1. Comparison between SVM and some of the traditional interpretation methods is also presented. The results of this study have shown that the SVM approach has the potential to be a practical tool for determination of OCR.
Resumo:
The determination of settlement of shallow foundations on cohesionless soil is an important task in geotechnical engineering. Available methods for the determination of settlement are not reliable. In this study, the support vector machine (SVM), a novel type of learning algorithm based on statistical theory, has been used to predict the settlement of shallow foundations on cohesionless soil. SVM uses a regression technique by introducing an ε – insensitive loss function. A thorough sensitive analysis has been made to ascertain which parameters are having maximum influence on settlement. The study shows that SVM has the potential to be a useful and practical tool for prediction of settlement of shallow foundation on cohesionless soil.
Resumo:
At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri
Resumo:
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (N,), N values have been corrected (Ne) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three-dimensional site characterization model, the function N-c=N-c (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to N, value, is to be approximated in which N, value at any half-space point in Bangalore can be determined. The first algorithm uses least-square support vector machine (LSSVM), which is related to aridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel-based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright (C) 2009 John Wiley & Sons,Ltd.
Resumo:
In this paper. we propose a novel method using wavelets as input to neural network self-organizing maps and support vector machine for classification of magnetic resonance (MR) images of the human brain. The proposed method classifies MR brain images as either normal or abnormal. We have tested the proposed approach using a dataset of 52 MR brain images. Good classification percentage of more than 94% was achieved using the neural network self-organizing maps (SOM) and 98% front support vector machine. We observed that the classification rate is high for a Support vector machine classifier compared to self-organizing map-based approach.
Resumo:
This paper discusses a method for scaling SVM with Gaussian kernel function to handle large data sets by using a selective sampling strategy for the training set. It employs a scalable hierarchical clustering algorithm to construct cluster indexing structures of the training data in the kernel induced feature space. These are then used for selective sampling of the training data for SVM to impart scalability to the training process. Empirical studies made on real world data sets show that the proposed strategy performs well on large data sets.
Resumo:
The use of the shear wave velocity data as a field index for evaluating the liquefaction potential of sands is receiving increased attention because both shear wave velocity and liquefaction resistance are similarly influenced by many of the same factors such as void ratio, state of stress, stress history and geologic age. In this paper, the potential of support vector machine (SVM) based classification approach has been used to assess the liquefaction potential from actual shear wave velocity data. In this approach, an approximate implementation of a structural risk minimization (SRM) induction principle is done, which aims at minimizing a bound on the generalization error of a model rather than minimizing only the mean square error over the data set. Here SVM has been used as a classification tool to predict liquefaction potential of a soil based on shear wave velocity. The dataset consists the information of soil characteristics such as effective vertical stress (sigma'(v0)), soil type, shear wave velocity (V-s) and earthquake parameters such as peak horizontal acceleration (a(max)) and earthquake magnitude (M). Out of the available 186 datasets, 130 are considered for training and remaining 56 are used for testing the model. The study indicated that SVM can successfully model the complex relationship between seismic parameters, soil parameters and the liquefaction potential. In the model based on soil characteristics, the input parameters used are sigma'(v0), soil type. V-s, a(max) and M. In the other model based on shear wave velocity alone uses V-s, a(max) and M as input parameters. In this paper, it has been demonstrated that Vs alone can be used to predict the liquefaction potential of a soil using a support vector machine model. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 sq.km. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, ordinary kriging and Support Vector Machine (SVM) models have been developed. In ordinary kriging, the knowledge of the semivariogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of Bangalore, where field measurements are not available. A cross validation (Q1 and Q2) analysis is also done for the developed ordinary kriging model. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing e-insensitive loss function has been used to predict the reduced level of rock from a large set of data. A comparison between ordinary kriging and SVM model demonstrates that the SVM is superior to ordinary kriging in predicting rock depth.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.