83 resultados para Superconducting Super Collider
em Indian Institute of Science - Bangalore - Índia
Resumo:
Thin films of Y--Ba--Cu--O have been prepared by conventional methods of RF sputtering. The films exhibit superconducting onset temperatures as high as 91K, midpoint at 80K and a zero resistance state at 35K. Critical current measurements implied critical current densities of the order of 31 A/cm exp 2 . An attempt has been made to establish the role of substrate and various deposition parameters. 7 ref.--AA.
Resumo:
The nonlinear current voltage characteristics of a point contact convey information about various excitations in the metal. We have made a poin~ contact study on a superconductor to see the band gap and on a normal metal to see Ihe transport characteristics.
Resumo:
Cuprates of the formula TlSr3−xLnxCu2O7 (Ln=Pr, NdorY) derived from the hypothetical TlSr3Cu2O7 show superconductivity with Tcs up to 95 K when 0.5less, approximatex≤0.75, the x=1.0 compositions being insulators. Rietveld analysis of X-ray diffraction profiles has been carried out for two superconducting members of this family. The unit cell a-parameter, and hence the in-plane Cu-O distance, increases with increase in x. The Tc value decreases with increase in x or the in-plane Cu-O distance in all the series of cuprates. Superconductivity in the Tl1−yPbySr3−xNdxCu2O7 systems is found with the highest Tc of 95 K when y=0.2 and x=0.5. The in-plane Cu-O distances in all the cuprates studied fall in the range found in the Sr-class of cuprate superconductors.
Resumo:
We report on a plan to establish a `Dictionary of LHC Signatures', an initiative that started at the WHEPP-X workshop in Chennai, January 2008. This study aims at the strategy of distinguishing 3 classes of dark matter motivated scenarios such as R-parity conserved supersymmetry, little Higgs models with T-parity conservation and universal extra dimensions with KK-parity for generic cases of their realization in a wide range of the model space. Discriminating signatures are tabulated and will need a further detailed analysis.
Resumo:
The role of a charge buffer layer in the superconductivity of high-T-c materials is best studied by cationic substitutions. In this work, the chain copper in YBCO single crystals is substituted by Co3+ ion and consequent effect on superconducting transition temperature (T-c) studied. The T-c is measured using non-resonant Microwave Absorption technique, which is a highly sensitive and contactless method. It is seen that T-c of as-grown crystals is considerably enhanced by cobalt doping in low concentration regime. In contrast, higher T-c is achieved in undoped crystals only after extended oxygen anneal. When dopant concentration increases beyond an optimal value, T-c decreases and the system does not show superconductivity when cobalt content is high (x > 0.5 in YBa2Cu3-xCOxO7+/-delta). This behaviour consequent to cobalt substitution is discussed with reference to the apical oxygen model. Optimal cobalt doping can be thought of as an alternative to extended oxygen anneal in as-grown crystals of YBCO.
Resumo:
In the superconducting state, YBa2Cu3O7 absorbs electromagnetic radiation over a wide range of frequencies (8 MHz-9 GHz). The absorption is extremely sensitive to temperature, particle size and the magnetic field and depends crucially on the presence of oxygen. A possible explanation for the phenomenon based on the formation of Josephson junctions is suggested.
Resumo:
Photoemission spectra of YBa2Cu3O7-δ in the normal and superconducting states provide direct evidence for dimerization of oxygen below Tc. Cu2+ is found to reduce to Cu1+ concomitantly. These changes may be of vital importance to the mechanism of high-temperature superconductivity.
Resumo:
We investigate use of transverse beam polarization in probing anomalous coupling of a Higgs boson to a pair of vector bosons, at the International Linear Collider (ILC). We consider the most general form of V V H (V = W/Z) vertex consistent with Lorentz invariance and investigate its effects on the process e(+)e(-) -> f (f) over barH, f being a light fermion. Constructing observables with definite C P and naive time reversal ((T) over tilde) transformation properties, we find that transverse beam polarization helps us to improve on the sensitivity of one part of the anomalous Z Z H Coupling that is odd under C P. Even more importantly it provides the possibility of discriminating from each other, two terms in the general Z Z H vertex, both of which are even under C P and (T) over bar. Use of transversebeam polarization when combined with information from unpolarized and linearly polarized beams therefore, allows one to have completely independent probes of all the different parts of a general ZZH vertex.
Resumo:
We have obtained the quantum phase diagram of a one-dimensional superconducting quantum dot lattice using the extended Bose-Hubbard model for different commensurabilities. We describe the nature of different quantum phases at the charge degeneracy point. We find a direct phase transition from the Mott insulating phase to the superconducting phase for integer band fillings of Cooper pairs. We predict explicitly the presence of two kinds of repulsive Luttinger liquid phases, besides the charge density wave and superconducting phases for half-integer band fillings. We also predict that extended range interactions are necessary to obtain the correct phase boundary of a one-dimensional interacting Cooper system. We have used the density matrix renormalization group method and Abelian bosonization to study our system.
Resumo:
Motivated by a suggestion in our earlier work [G. Baskaran, Phys. Rev. B 65, 212505 (2002)], we study electron correlation driven superconductivity in doped graphene where on-site correlations are believed to be of intermediate strength. Using an extensive variational Monte Carlo study of the repulsive Hubbard model and a correlated ground state wave function, we show that doped graphene supports a superconducting ground state with a d+id pairing symmetry. We estimate superconductivity reaching room temperatures at an optimal doping of about 15%-20%. Our work suggests that correlations can stabilize superconductivity even in systems with intermediate coupling.
Resumo:
We report interesting anomalies in the temperature dependent Raman spectra of FeSe0.82 measured from 3 K to 300 K in the spectral range from 60 to 1800 cm(-1) and determine their origin using complementary first-principles density functional calculations. A phonon mode near 100 cm-1 exhibits a sharp increase by similar to 5% in the frequency below a temperature T-s (similar to 100 K) attributed to strong spin-phonon coupling and onset of short-range antiferromagnetic order. In addition, two high frequency modes are observed at 1350 cm-1 and 1600 cm-1, attributed to electronic Raman scattering from (x(2)-y(2)) to xz/yz d-orbitals of Fe. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the (Bi,Pb)-Sr-Cu-O system we have examined many compositions which are either metallic or semiconducting. In the Bi2-xPbx(Ca, Sr)n+1 Cun O2n+4+δ system, we have established the superconducting properties of the n = 1 to 4 members. The Tc increases from n = 1 to 3 and does not increase further when n = 4. In Bi2Ca1-x,YxSr2Cu2Oy, the Tc decreases with increase in x.
Resumo:
We report x-ray photoelectron spectroscopic investigation of RuSr2Eu1.5Ce0.5Cu2O10 with ferromagnetic T-C similar to 100 K and a superconducting transition temperature of similar to 30 K compared with RuSr2EuCeCu2O10, which is a ferromagnetic (T-C similar to 150 K) insulator. Our results show that the rare earths, Eu and Ce, are in 3+ and 4+ states, respectively. Comparing the Ru core level spectra from these compounds to those from two Ru reference oxides, we also show that Ru in these ruthenocuprates is always in 5+ state, suggesting that the doped holes in the superconducting compound arising from the substitution of Ce4+ by Eu3+ are primarily in the Cu-O plane, in close analogy to all other doped high-T-C cuprates. Analysis of Cu 2p spectra in terms of a configuration interaction model provides a quantitative description of the gross electronic structures of these ruthenocuprates.
Resumo:
High-Tc superconducting thin films can be deposited and processed by pulsed and CW lasers, and a respectable materials technology for the Y-Ba-Cu-O superconductor is rapidly emerging. The pulsed laser deposition technique is simple because it produces films with compositions nearly identical to those of the target pellets. A larger variety of substrates can be used, compared to other deposition technologies, because of the relatively low temperature requirements. The laser deposition mechanism has been investigated. As-deposited superconducting films, epitaxial films with smooth surfaces, and multilayer structures with abrupt interfaces have been produced. The electrical transport properties can be changed locally using a focused argon-ion laser by modifying the oxygen stoichiometry. This laser writing can be erased by room-temperature exposure to an oxygen plasma. Other laser patterning methods such as material removal, melt-quench, and direct pattern transfer are being developed.