18 resultados para Sugarcane diseases detection index
em Indian Institute of Science - Bangalore - Índia
Resumo:
Sugarcane streak mosaic virus (SCSMV), causes mosaic disease of sugarcane and is thought to belong to a new undescribed genus in the family Potyviridae. The coat protein (CP) gene from the Andhra Pradesh (AP) isolate of SCSMV (SCSMV AP) was cloned and expressed in Escherichia coli. The recombinant coat protein was used to raise high quality antiserum. The CP antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) based assay for the detection and discrimination of SCSMV isolates in South India. The sequence of the cloned PCR products encoding 3'untranslated region (UTR) and CP regions of the virus isolates from three different locations in South India viz. Tanuku (Coastal Andhra Pradesh), Coimbatore (Tamil Nadu) and Hospet (Karnataka) was compared with that of SCSMV AP The analysis showed that they share 89.4, 89.5 and 90% identity respectively at the nucleotide level. This suggests that the isolates causing mosaic disease of sugarcane in South India are indeed strains of SCSMV In addition, the sensitivity of the IC-RT-PCR was compared with direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA) and dot-blot immunobinding assays and was found to be more sensitive and hence could be used to detect the presence of virus in sugarcane breeding, germplasm centres and in quarantine programs.
Resumo:
This study in Western Ghats, India, investigates the relation between nesting sites of ants and a single remotely sensed variable: the Normalised Difference Vegetation Index (NDVI). We carried out sampling in 60 plots each measuring 30 x 30 m and recorded nest sites of 13 ant species. We found that NDVI values at the nesting sites varied considerably between individual species and also between the six functional groups the ants belong to. The functional groups Cryptic Species, Tropical Climate Specialists and Specialist Predators were present in regions with high NDVI whereas Hot Climate Specialists and Opportunists were found in sites with low NDVI. As expected we found that low NDVI values were associated with scrub jungles and high NDVI values with evergreen forests. Interestingly, we found that Pachycondyla rufipes, an ant species found only in deciduous and evergreen forests, established nests only in sites with low NDVI (range = 0.015 - 0.1779). Our results show that these low NDVI values in deciduous and evergreen forests correspond to canopy gaps in otherwise closed deciduous and evergreen forests. Subsequent fieldwork confirmed the observed high prevalence of P. rufipes in these NDVI-constrained areas. We discuss the value of using NDVI for the remote detection and distinction of ant nest sites.
Resumo:
Automatic and accurate detection of the closure-burst transition events of stops and affricates serves many applications in speech processing. A temporal measure named the plosion index is proposed to detect such events, which are characterized by an abrupt increase in energy. Using the maxima of the pitch-synchronous normalized cross correlation as an additional temporal feature, a rule-based algorithm is designed that aims at selecting only those events associated with the closure-burst transitions of stops and affricates. The performance of the algorithm, characterized by receiver operating characteristic curves and temporal accuracy, is evaluated using the labeled closure-burst transitions of stops and affricates of the entire TIMIT test and training databases. The robustness of the algorithm is studied with respect to global white and babble noise as well as local noise using the TIMIT test set and on telephone quality speech using the NTIMIT test set. For these experiments, the proposed algorithm, which does not require explicit statistical training and is based on two one-dimensional temporal measures, gives a performance comparable to or better than the state-of-the-art methods. In addition, to test the scalability, the algorithm is applied on the Buckeye conversational speech corpus and databases of two Indian languages. (C) 2014 Acoustical Society of America.
Resumo:
Detection of QRS serves as a first step in many automated ECG analysis techniques. Motivated by the strong similarities between the signal structures of an ECG signal and the integrated linear prediction residual (ILPR) of voiced speech, an algorithm proposed earlier for epoch detection from ILPR is extended to the problem of QRS detection. The ECG signal is pre-processed by high-pass filtering to remove the baseline wandering and by half-wave rectification to reduce the ambiguities. The initial estimates of the QRS are iteratively obtained using a non-linear temporal feature, named the dynamic plosion index suitable for detection of transients in a signal. These estimates are further refined to obtain a higher temporal accuracy. Unlike most of the high performance algorithms, this technique does not make use of any threshold or differencing operation. The proposed algorithm is validated on the MIT-BIH database using the standard metrics and its performance is found to be comparable to the state-of-the-art algorithms, despite its threshold independence and simple decision logic.
Resumo:
Digoxigenin (DIG)-labeled DNA probe was developed for a sensitive and rapid detection of the Tobacco streak virus (TSV) isolates in India by dot-blot and tissue print hybridization techniques. DIG-labeled DNA probe complementary to the coat protein (CP) region of TSV sunflower isolate was designed and used to detect the TSV presence at field levels. Dot-blot hybridization was used to check a large number of TSV isolates with a single probe. In addition, a sensitivity of the technique was examined with the different sample extraction methods. Another technique, the tissue blot hybridization offered a simple, reliable procedure and did not require a sample processing. Thus, both non-radioactively labeled probe techniques could facilitate the sample screening during TSV outbreaks and offer an advantage in quarantine services.
Resumo:
Entamoeba histolytica-specific serum IgG, IgA, IgM and IgE antibodies were assayed in cases of amoebiasis in an endemic area. Patient groups consisted of amoebic liver abscess (n=18), pre-abscess hepatic amoebiasis (n=22) and amoebic colitis (n=30). Control subjects comprised 26 asymptomatic cyst passers, 13 giardiasis cases, 20 typhoid patients and 24 non-amoebic individuals. Serum IgG was assayed by ELISA, using a monoclonal anti IgG β- galactosidase (IgG β-gal) conjugate, a polyclonal avidin biotin horse radish peroxidase (AB-HRP), and a polyclonal anti IgG horse radish peroxidase (IgG HRP) conjugate. IgA and IgM were assayed by the β-gal ELISA and IgE by AB-HRP. Diagnostically significant IgG and IgA while lower IgM and IgE antibody levels were seen in extraintestinal cases. About 40% of suspected pre-abscess hepatic amoebiasis cases were confirmed by antibody estimation. All isotype levels in most dysentery cases were in the range of the controls.
Resumo:
MEMS systems are technologically developed from integrated circuit industry to create miniature sensors and actuators. Originally these semiconductor processes and materials were used to build electrical and mechanical systems, but expanded to include biological, optical fluidic magnetic and other systems 12]. Here a novel approach is suggested where in two different fields are integrated via moems, micro fluidics and ring resonators. It is well known at any preliminary stage of disease onset, many physiological changes occur in the body fluids like saliva, blood, urine etc. The drawback till now was that current calibrations are not sensitive enough to detect the minor physiological changes. This is overcome using optical detector techniques 1]. The basic concepts of ring resonators, with slight variations can be used for optical detection of these minute disease markers. A well known fact of ring resonators is that a change in refractive index will trigger a shift in the resonant wavelength 5]. The trigger for the wavelength shift in the case discussed will be the presence of disease agents. To trap the disease agents specific antibody has to be used (e. g. BSA).
Resumo:
While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.
Resumo:
Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.
Resumo:
Chiral metamaterials have recently gained attention due to their applicability in developing polarization devices and in the detection of chiral molecules. A common approach towards fabricating plasmonic chiral nanostructures has been decorating metallic nanoparticles on dielectric chiral scaffolds, such as a helix. This resulted in the generation of a large chiro-optical response over a wide range of the electromagnetic spectrum. It has been shown previously that the optical tunability of these chiral metamaterials depends on the geometrical aspects of the overall structure, as well as the nature of the plasmonic constituents. In this study, we have investigated the role of the underlying dielectric scaffold with numerical simulations, and experimentally demonstrated that it is possible to enhance and engineer their chiro-plasmonic response significantly by choosing dielectric scaffolds of appropriate materials.
Resumo:
We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 x 10(-7) was achieved with this technique with scope for further improvement.
Resumo:
Climate change is expected to influence extreme precipitation which in turn might affect risks of pluvial flooding. Recent studies on extreme rainfall over India vary in their definition of extremes, scales of analyses and conclusions about nature of changes in such extremes. Fingerprint-based detection and attribution (D&A) offer a formal way of investigating the presence of anthropogenic signals in hydroclimatic observations. There have been recent efforts to quantify human effects in the components of the hydrologic cycle at large scales, including precipitation extremes. This study conducts a D&A analysis on precipitation extremes over India, considering both univariate and multivariate fingerprints, using a standardized probability-based index (SPI) from annual maximum one-day (RX1D) and five-day accumulated (RX5D) rainfall. The pattern-correlation based fingerprint method is used for the D&A analysis. Transformation of annual extreme values to SPI and subsequent interpolation to coarser grids are carried out to facilitate comparison between observations and model simulations. Our results show that in spite of employing these methods to address scale and physical processes mismatch between observed and model simulated extremes, attributing changes in regional extreme precipitation to anthropogenic climate change is difficult. At very high (95%) confidence, no signals are detected for RX1D, while for the RX5D and multivariate cases only the anthropogenic (ANT) signal is detected, though the fingerprints are in general found to be noisy. The findings indicate that model simulations may underestimate regional climate system responses to increasing human forcings for extremes, and though anthropogenic factors may have a role to play in causing changes in extreme precipitation, their detection is difficult at regional scales and not statistically significant. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we consider applying derived knowledge base regarding the sensitivity and specificity of damage(s) to be detected by an SHM system being designed and qualified. These efforts are necessary toward developing capabilities in SHM system to classify reliably various probable damages through sequence of monitoring, i.e., damage precursor identification, detection of damage and monitoring its progression. We consider the particular problem of visual and ultrasonic NDE based SHM system design requirements, where the damage detection sensitivity and specificity data definitions for a class of structural components are established. Methodologies for SHM system specification creation are discussed in details. Examples are shown to illustrate how the physics of damage detection scheme limits particular damage detection sensitivity and specificity and further how these information can be used in algorithms to combine various different NDE schemes in an SHM system to enhance efficiency and effectiveness. Statistical and data driven models to determine the sensitivity and probability of damage detection (POD) has been demonstrated for plate with varying one-sided line crack using optical and ultrasonic based inspection techniques.
Resumo:
In this paper we consider the problem of guided wave scattering from delamination in laminated composite and further the problem of estimating delamination size and layer-wise location from the guided wave measurement. Damage location and region/size can be estimated from time of flight and wave packet spread, whereas depth information can be obtained from wavenumber modulation in the carrier packet. The key challenge is that these information are highly sensitive to various uncertainties. Variation in reflected and transmitted wave amplitude in a bar due to boundary/interface uncertainty is studied to illustrate such effect. Effect of uncertainty in material parameters on the time of flight are estimated for longitudinal wave propagation. To evaluate the effect of uncertainty in delamination detection, we employ a time domain spectral finite element (tSFEM) scheme where wave propagation is modeled using higher-order interpolation with shape function have spectral convergence properties. A laminated composite beam with layer-wise placement of delamination is considered in the simulation. Scattering due to the presence of delamination is analyzed. For a single delamination, two identical waveforms are created at the two fronts of the delamination, whereas waves in the two sub-laminates create two independent waveforms with different wavelengths. Scattering due to multiple delaminations in composite beam is studied.