79 resultados para Stress-induced ordering
em Indian Institute of Science - Bangalore - Índia
Resumo:
A novel stress-induced martensitic phase transformation in an initial < 100 >/{100} B2-CuZr nanowire is reported for the first time in this letter. Such behavior is observed in a nanowire with cross-sectional dimensions of 19.44 x 19.44 angstrom(2) over a temperature range of 100-400 K and at a strain rate of 1 x 10(9) s(-1) using atomistic simulations. Phase transformation from an initial B2 phase to a BCT (Body-Centered-Tetragonal) phase is observed via nucleation and propagation of {100} twinning plane under high strain rate tensile deformation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Extensive molecular dynamics (MD) simulations have been performed in a B2-NiAl nanowire using an embedded atom method (EAM) potential. We show a stress induced B2 -> body-centered-tetragonal (BCT) phase transformation and a novel temperature and cross-section dependent pseudo-elastic/pseudo-plastic recovery from such an unstable BCT phase with a recoverable strain of similar to 30% as compared to 5-8% in polycrystalline materials. Such a temperature and cross-section dependent pseudo-elastic/pseudo-plastic strain recovery can be useful in various interesting applications of shape memory and strain sensing in nanoscale devices. Effects of size, temperature, and strain rate on the structural and mechanical properties have also been analyzed in detail. For a given size of the nanowire the yield stress of both the B2 and the BCT phases is found to decrease with increasing temperature, whereas for a given temperature and strain rate the yield stress of both the B2 and the BCT phase is found to increase with increase in the cross-sectional dimensions of the nanowire. A constant elastic modulus of similar to 80 GPa of the B2 phase is observed in the temperature range of 200-500 K for nanowires of cross-sectional dimensions in the range of 17.22-28.712 angstrom, whereas the elastic modulus of the BCT phase shows a decreasing trend with an increase in the temperature.
Resumo:
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.
Resumo:
Recently, a novel stress-induced phase transformation in an initial < 100 >/{100} B2-CuZr nanowire has been reported for the first time [Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. Following this, a martenisitic phase transformation in Cu-Zr nanowire was shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)] using the same idea (Sutrakar and Mahapatra, Mater. Lett. 63, 1289 (2009)]. The pseudoelastic recovery of the bct phase of Cu-Zr by unloading has also been shown [Cheng et al., Appl. Phys. Lett. 95, 021911 (2009)]. They also tested the epitaxial bain path [Alippi et al., Phys. Rev. Lett. 78, 3892 (1997)] and reported that the bct phase in the nanowire is metastable, whereas the bulk counterpart is unstable. This aspect is re-examined in this comment with corrected results.
Resumo:
Crack loading and crack extension in pseudoelastic binary NiTi shape memory alloy (SMA) miniature compact tension (CT) specimens with 50.7 at.% Ni (austenitic, pseudoelastic) was investigated using infrared (IR) thermography during in situ loading and unloading. IR thermographic measurements allow for the observation of heat effects associated with the stress-induced transformation of martensite from B2 to BIT during loading and the reverse transformation during unloading. The results are compared with optical images and discussed in terms of the crack growth mechanisms in pseudoelastic NiTi SMAs. Direct experimental evidence is presented which shows that crack growth occurs into a stress-induced martensitic microstructure, which immediately retransforms to austenite in the wake of the crack.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
We control the stiffnesses of two dual double cantelevers placed in series to control penetration into a perflurooctyltrichlorosilane monolayer self assembled on aluminium and silicon substrates. The top cantilever which carries the probe is displaced with respect to the bottom cantilever which carries the substrate, the difference in displacement recorded using capacitors gives penetration. We further modulate the input displacement sinusoidally to deconvolute the viscoelastic properties of the monolayer. When the intervention is limited to the terminal end of the molecule there is a strong viscous response in consonance with the ability of the molecule to dissipate energy by the generation of gauche defects freely. When the intervention reaches the backbone, at a contact mean pressure of 0.2GPa the damping disappears abruptly and the molecule registers a steep rise in elastic modulus and relaxation time constant, with increasing contact pressure. We offer a physical explanation of the process and describe this change as due to a phase transition from a liquid like to a solid like state.
Resumo:
A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Resumo:
Mycobacterium tuberculosis (Mtb) has evolved protective and detoxification mechanisms to maintain cytoplasmic redox balance in response to exogenous oxidative stress encountered inside host phagocytes. In contrast, little is known about the dynamic response of this pathogen to endogenous oxidative stress generated within Mtb. Using a noninvasive and specific biosensor of cytoplasmic redox state of Mtb, we for first time discovered a surprisingly high sensitivity of this pathogen to perturbation in redox homeostasis induced by elevated endogenous reactive oxygen species (ROS). We synthesized a series of hydroquinone-based small molecule ROS generators and found that ATD-3169 permeated mycobacteria to reliably enhance endogenous ROS including superoxide radicals. When Mtb strains including multidrug-resistant (MDR) and extensively drug-resistant (XDR) patient isolates were exposed to this compound, a dose-dependent, long-lasting, and irreversible oxidative shift in intramycobacterial redox potential was detected. Dynamic redox potential measurements revealed that Mtb had diminished capacity to restore cytoplasmic redox balance in comparison with Mycobacterium smegmatis (Msm), a fast growing nonpathogenic mycobacterial species. Accordingly, Mtb strains were extremely susceptible to inhibition by ATD-3169 but not Msm, suggesting a functional linkage between dynamic redox changes and survival. Microarray analysis showed major realignment of pathways involved in redox homeostasis, central metabolism, DNA repair, and cell wall lipid biosynthesis in response to ATD-3169, all consistent with enhanced endogenous ROS contributing to lethality induced by this compound. This work provides empirical evidence that the cytoplasmic redox poise of Mtb is uniquely sensitive to manipulation in steady-state endogenous ROS levels, thus revealing the importance of targeting intramycobacterial redox metabolism for controlling TB infection. (C) 2015 The Authors. Published by Elsevier Inc.
Resumo:
Stress is inevitable during thin film growth. It is demonstrated here that the growth stress has a significant effect on the dielectric constant of high-k thin films. ZrO2 thin films were deposited on Ge by reactive direct current sputtering. Stress in these films was measured using in-situ curvature measurement tool. The growth stress was tuned from -2.8 to 0.1 GPa by controlling deposition rate. Dielectric permittivity of ZrO2 depends on temperature, phase, and stress. The correct combination of parameters-phase, texture, and stress-is shown to yield films with an equivalent oxide thickness of 8 angstrom. Growth stresses are shown to affect the dielectric constant both directly by affecting lattice parameter and indirectly through the effect on phase stability of ZrO2. (c) 2016 AIP Publishing LLC.
Resumo:
Objective: The present study is to evaluate the antiulcer effect of hydroalcoholic (70%) extract of Terminalia chebula fruit. Materials and methods: Aspirin, ethanol and cold restraint stress-induced ulcer methods in rats were used for the study. The effects of the extract on gastric secretions, pH, total and free acidity using pylorus ligated methods were also evaluated. Results: Animals pretreated with doses of 200 and 500 mg/kg hydroalcoholic extract showed significant reduction in lesion index, total affected area and percentage of lesion in comparison with control group (P < 0.05 and P < 0.01) in the aspirin, ethanol and cold restraint stress-induced ulcer models. Similarly extracts increased mucus production in aspirin and ethanol-induced ulcer models. At doses of 200 and 500 mg/kg of T. chebula extract showed antisecretory activity in pylorus ligated model, which lead to a reduction in the gastric juice volume, free acidity, total acidity, and significantly increased gastric pH. Discussion and conclusion: These findings indicate that hydroalcoholic extract of the fruit T. chebula displays potential antiulcerogenic activity. This activity thus lends pharmacological credence to the suggested use of the plant as a natural remedy in the treatment or management of ulcer.
Resumo:
CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Grain growth during indentation at low temperatures has been taken to imply that grain growth is largely stress induced and athermal in nanometals. Indentation experiments on electrodeposited nano-Ni indicate clearly that the load required for grain growth decreases with an increase in temperature, suggesting strongly that concurrent grain growth is thermally activated. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.