127 resultados para Strengths

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shifman-Vainshtein-Zakharov method of determining the eigenvalues and coupling strengths, from the operator product expansion, for the current correlation functions is studied in the nonrelativistic context, using the semiclassical expansion. The relationship between the low-lying eigenvalues, and the leading corrections to the imaginary-time Green function is elucidated by comparing systems which have almost identical spectra. In the case of an anharmonic oscillator it is found that with the procedure stated in the paper, that inclusion of more terms to the asymptotic expansion does not show any simple trend towards convergence to the exact values. Generalization to higher partial waves is given. In particular for the P-level of the oscillator, the procedure gives poorer results than for the S-level, although the ratio of the two comes out much better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Relative band strengths of diatomic molecules for which the product of Franck-Condon factor and r-centroid is approximately equal to 1 for (0,0) band can be determined by a simple method which will be in good agreement with the smoothed array of experimental values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coulomb interaction strengths (Udd and Uff) have been calculated from Hartree-Fock-Slater atomic calculations for 3d transition and 5f actinide elements, respectively. By decomposing the different contributions to the response (screening) to the 3d charge fluctuation, we show that a substantial reduction in Udd arises due to the relaxation of the 3d charge distribution itself. This, combined with the screening due to the response of the 4s charge density, is shown to provide a very compact screening charge comparable to the metallic case, explaining the success of the atomic calculations for estimating U even in the metals. A pronounced dependence of Udd (or Uff) on the number of electrons nd (nf) or the electronic configuration is also shown here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The moisture absorption and changes in compression strengths in glass-epoxy (G-E composites without and with discrete quantities of graphite powders introduced into the resin mix prior to its spreading on specific glass fabric (layers) during the lay-up (stacking) sequence forms the subject matter of this report. The results point to higher moisture absorption for graphite bearing specimens. The strengths of graphite-free coupons show a continuous decrease, while the filler bearing ones show an initial rise followed by a drop for larger exposure times. Scanning Fractographic features were examined for an understanding of the process. The observations were explained invoking the effect of matrix plasticizing and the role of interfacial regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Refinement of the internal grain size leads to strengthening by retarding dislocation motion. There have also been recent reports that a reduction in external diameter enhances the strength of single crystal pillars. Here we show, in a hitherto unexplored domain, a synergistic increase in strength by a combined reduction in internal (0.5 mu m) and external (20-50 mu m) dimensions, with strengths at failure approaching the theoretical value. (c) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

First-principles density functional theory has been used to evaluate the shear and cleavage strength in terms of Griffith work and generalized stacking fault energy (GSF) of (001) plane for gamma, gamma' and gamma-gamma' system as a function of distance from the gamma/gamma' interface. Calculation of Griffith work suggests higher cleavage energy for bulk gamma as compared to gamma' while the GSF calculation suggests higher shear strength for bulk gamma' as compared to gamma. It has been found that the shear strength of the cubic plane of the gamma/gamma' interface is marginally lower than those of bulk gamma and gamma' phases. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the evolution of electronic structure with dimensionality (d) of Ni-O-Ni connectivity in divalent nickelates, NiO (3-d), La2NiO4, Pr2NiO4 (2-d), Y2BaNiO5 (1-d) and Lu2BaNi5 (0-d), by analyzing the valence band and the Ni 2p core-level photoemission spectra in conjunction with detailed many-body calculations including full multiplet interactions. Experimental results exhibit a reduction in the intensity of correlation-induced satellite features with decreasing dimensionality. The calculations based on the cluster model, but evaluating both Ni 3d and O 2p related photoemission processes on the same footing, provide a consistent description of both valence-band and core-level spectra in terms of various interaction strengths. While the correlation-induced satellite features in NiO is dominated by poorly screened d(8) states as described in the existing literature, we find that the satellite features in the nickelates with lower dimensional Ni-O-Ni connectivity are in fact dominated by the over-screened d(10)L(2) states. It is found that the changing electronic structure with the dimensionality is primarily driven by two factors: (i) a suppression of the nonlocal contribution to screening; and (ii) a systematic decrease of the charge-transfer energy Delta driven by changes in the Madelung potential. [S0163-1829(99)09619-8].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several mechanisms have been proposed to explain the action of enzymes at the atomic level. Among them, the recent proposals involving short hydrogen bonds as a step in catalysis by Gerlt and Gassman [1] and proton transfer through low barrier hydrogen bonds (LBHBs) [2, 3] have attracted attention. There are several limitations to experimentally testing such hypotheses, Recent developments in computational methods facilitate the study of active site-ligand complexes to high levels of accuracy, Our previous studies, which involved the docking of the dinucleotide substrate UpA to the active site of RNase A [4, 5], enabled us to obtain a realistic model of the ligand-bound active site of RNase A. From these studies, based on empirical potential functions, we were able to obtain the molecular dynamics averaged coordinates of RNase A, bound to the ligand UpA. A quantum mechanical study is required to investigate the catalytic process which involves the cleavage and formation of covalent bonds. In the present study, we have investigated the strengths of some of the hydrogen bonds between the active site residues of RNase A and UpA at the ab initio quantum chemical level using the molecular dynamics averaged coordinates as the starting point. The 49 atom system and other model systems were optimized at the 3-21G level and the energies of the optimized systems were obtained at the 6-31G* level. The results clearly indicate the strengthening of hydrogen bonds between neutral residues due to the presence of charged species at appropriate positions. Such a strengthening manifests itself in the form of short hydrogen bonds and a low barrier for proton transfer. In the present study, the proton transfer between the 2'-OH of ribose (from the substrate) and the imidazole group from the H12 of RNase A is influenced by K41, which plays a crucial role in strengthening the neutral hydrogen bond, reducing the barrier for proton transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of dual-phase (DP) steels containing finely dispersed martensite with different volume fractions of martensite (V-m) were produced by intermediate quenching of a boron- and vanadium-containing microalloyed steel. The volume fraction of martensite was varied from 0.3 to 0.8 by changing the intercritical annealing temperature. The tensile and impact properties of these steels were studied and compared to those of step-quenched steels, which showed banded microstructures. The experimental results show that DP steels with finely dispersed microstructures have excellent mechanical properties, including high impact toughness values, with an optimum in properties obtained at similar to 0.55 V-m. A further increase in V-m was found to decrease the yield and tensile strengths as well as the impact properties. It was shown that models developed on the basis of a rule of mixtures are inadequate in capturing the tensile properties of DP steels with V-m > 0.55. Jaoul-Crussard analyses of the work-hardening behavior of the high-martensite volume fraction DP steels show three distinct stages of plastic deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An artificial neural network (ANN) is presented to predict a 28-day compressive strength of a normal and high strength self compacting concrete (SCC) and high performance concrete (HPC) with high volume fly ash. The ANN is trained by the data available in literature on normal volume fly ash because data on SCC with high volume fly ash is not available in sufficient quantity. Further, while predicting the strength of HPC the same data meant for SCC has been used to train in order to economise on computational effort. The compressive strengths of SCC and HPC as well as slump flow of SCC estimated by the proposed neural network are validated by experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental investigations into the dielectric properties of epoxy-ZnO nanocomposites at different filler loadings reveal few unique behaviors (at certain filler loadings) and also advantageous characteristics in contrast to the properties obtained for the corresponding microcomposites. Results demonstrate that in nanocomposites, it is possible to achieve lower values of permittivity and tan delta with respect to unfilled epoxy over a wide frequency range. Analysis of the results attributes this interesting observation to the interaction dynamics between the epoxy chains and the ZnO nanoparticles at the interfacial area. The dc volume resistivities and ac dielectric strengths of nanocomposites were also experimentally determined in the present study and the obtained characteristics are found to be different as compared to the results obtained for microcomposites. The volume fraction and nature of the interfaces in the bulk of the composites seem to influence this difference in the examined dielectric properties of the nanocomposites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations on the phase relations and dielectric properties of (1 -x)BaTiO3 + xNd2/3TiO 3 (BNT) ceramics sintered in air below 1650 K have been carried out. X-ray powder diffraction studies indicate apparent phase singularity for compositions with x < 0.3. Nd2Ti207 is detected at higher neodymium concentrations. The unit cell parameter changes continuously with neodymium content, and BaTiO3 is completely cubic at room temperature with x -- 0.0525, whereas electron diffraction studies indicate that the air-sintered BNT ceramics with x > 0.08 contain additional phases that are partly amorphous even to an electron beam. SEM observations reveal that BaTiO3 grains are mostly covered by a molten intergranular phase, and show the presence of randomly distributed Nd2Ti207 grains. Energy dispersive X-ray analysis shows the Ba-Nd-Ti ternary composition of the intergranular phase. Differential thermal analysis studies support the formation of a partial melt involving dissolution-precipitation of boundary layers of BaTiO3 grains. These complex phase relations are accounted for in terms of the phase instability of BaTiO3 with large cation-vacancy concentration as a result of heavy Nd 3+ substitution. The absence of structural intergrowth in (1 - x)BaTiO3 + xNd2/3TiO3 under oxidative conditions leads to a separation of phases wherein the new phases undergo melting and remain X-ray amorphous. BNT ceramics with 0.1 < x < 0.3 have ~eff >~ 104 with tan 6 < 0.1 and nearly flat temperature capacitance characteristics. The grain-size dependence of ee,, variations of ~eff and tan 6 with the measuring frequency, the non-ohmic resistivities, and the non-linear leakage currents at higher field-strengths which are accompanied by the decrease in eeff and rise in tan 3, are explained on the basis of an intergranular (internal boundary layer) dielectric characteristic of these ceramics.