40 resultados para Standards of length.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Length scale-down (LS) model tests have been traditionally employed for laboratory studies on aeolian vibration of transmission line conductors. The span adopted is normally 30 m and is recommended by the relevant Indian, as well as other, standards. The traditionally adopted length of the LS model is reexamined herein to establish the rationale behind the choice. Based on the theoretical studies discussed, certain guidelines for the choice of model span of conductor are emphasized. In addition, the adequacy of the LS span as a tool for predicting the performance of the full span is reestablished.
Resumo:
In the present paper, Eringen's nonlocal elasticity theory is employed to evaluate the length dependent in-plane stiffness of single-walled carbon nanotubes (SWCNTs). The SWCNT is modeled as an Euler-Bernoulli beam and is analyzed for various boundary conditions to evaluate the length dependent in-plane stiffness. It has been found that the nonlocal scaling parameter has a significant effect on the length dependent in-plane stiffness of SWCNTs. It has been observed that as the nonlocal scale parameter increases the stiffness ratio of SWCNT decreases. In nonlocality, the cantilever SWCNT has high in-plane stiffness as compared to the simply-supported and the clamped cases.
Resumo:
Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper attempts a quantitative understanding of the effect of length scale on two phase eutectic structure. We first develop a model that considers both the elastic and plastic properties of the interface. Using Al-Al2Cu lamellar eutectic as model system, the parameters of the model were experimentally determined using indentation technique. The model is further validated using the results of bulk compression testing of the eutectics having different length scales. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4761944]
Resumo:
During the motion of one dimensional flexible objects such as ropes, chains, etc., the assumption of constant length is realistic. Moreover,their motion appears to be naturally minimizing some abstract distance measure, wherein the disturbance at one end gradually dies down along the curve defining the object. This paper presents purely kinematic strategies for deriving length-preserving transformations of flexible objects that minimize appropriate ‘motion’. The strategies involve sequential and overall optimization of the motion derived using variational calculus. Numerical simulations are performed for the motion of a planar curve and results show stable converging behavior for single-step infinitesimal and finite perturbations 1 as well as multi-step perturbations. Additionally, our generalized approach provides different intuitive motions for various problem-specific measures of motion, one of which is shown to converge to the conventional tractrix-based solution. Simulation results for arbitrary shapes and excitations are also included.
Resumo:
Let R be a (commutative) local principal ideal ring of length two, for example, the ring R = Z/p(2)Z with p prime. In this paper, we develop a theory of normal forms for similarity classes in the matrix rings M-n (R) by interpreting them in terms of extensions of R t]-modules. Using this theory, we describe the similarity classes in M-n (R) for n <= 4, along with their centralizers. Among these, we characterize those classes which are similar to their transposes. Non-self-transpose classes are shown to exist for all n > 3. When R has finite residue field of order q, we enumerate the similarity classes and the cardinalities of their centralizers as polynomials in q. Surprisingly, the polynomials representing the number of similarity classes in M-n (R) turn out to have non-negative integer coefficients.
Resumo:
Assuming the grinding wheel surface to be fractal in nature, the maximum envelope profile of the wheel and contact deflections are estimated over a range of length scales. This gives an estimate of the 'no wear' roughness of a surface ground metal. Four test materials, aluminum, copper, titanium, and steel are surface ground and their surface power spectra were estimated. The departure of this power spectra from the 'no wear' estimates is studied in terms of the traction-induced wear damage of the surfaces. The surface power spectra in grinding are influenced by hardness and the power is enhanced by wear damage. No such correlation with hardness was found for the polished surface, the roughness of which is insensitive to mechanical properties and appears to be influenced by microstructure and physical properties of the material.
Resumo:
The glass transition, whereby liquids transform into amorphous solids at low temperatures, is a subject of intense research despite decades of investigation. Explaining the enormous increase in relaxation times of a liquid upon supercooling is essential for understanding the glass transition. Although many theories, such as the Adam-Gibbs theory, have sought to relate growing relaxation times to length scales associated with spatial correlations in liquid structure or motion of molecules, the role of length scales in glassy dynamics is not well established. Recent studies of spatially correlated rearrangements of molecules leading to structural relaxation, termed ``spatially heterogeneous dynamics,'' provide fresh impetus in this direction. A powerful approach to extract length scales in critical phenomena is finite-size scaling, wherein a system is studied for sizes traversing the length scales of interest. We perform finite-size scaling for a realistic glass-former, using computer simulations, to evaluate the length scale associated with spatially heterogeneous dynamics, which grows as temperature decreases. However, relaxation times that also grow with decreasing temperature do not exhibit standard finite-size scaling with this length. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode-coupling theory. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions.
Resumo:
With a short review of the work on the Lecher wire method of wavelength measurement, this paper describes in detail the wave form of current distribution along wires under a variety of terminal conditions of length and impedances.
Resumo:
This paper deals with the design considerations of surface aeration tanks on two basic issues of oxygen transfer coefficient and power requirements for the surface aeration system. Earlier developed simulation equations for simulating the oxygen transfer coefficient with theoretical power per unit volume have been verified by conducting experiments in geometrically similar but differently shaped and sized square tanks, rectangular tanks of length to width ratio (L/W) of 1.5 and 2 as well as circular tanks. Based on the experimental investigations, new simulation criteria to simulate actual power per unit volume have been proposed. Based on such design considerations, it has been demonstrated that it is economical (in terms of energy saving) to use smaller tanks rather than using a bigger tank to aerate the same volume of water for any shape of tanks. Among the various shapes studied, it has been found that circular tanks are more energy efficient than any other shape.
Resumo:
We consider single-source, single-sink multi-hop relay networks, with slow-fading Rayleigh fading links and single-antenna relay nodes operating under the half-duplex constraint. While two hop relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this two-part paper, we identify two families of networks that are multi-hop generalizations of the two hop network: K-Parallel-Path (KPP) networks and Layered networks. In the first part, we initially consider KPP networks, which can be viewed as the union of K node-disjoint parallel paths, each of length > 1. The results are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the optimal DMT of KPP(D) networks with K >= 4, and KPP(I) networks with K >= 3. Along the way, we derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. As a special case, the DMT of two-hop relay network without direct link is obtained. Two key implications of the results in the two-part paper are that the half-duplex constraint does not necessarily entail rate loss by a factor of two, as previously believed and that, simple AF protocols are often sufficient to attain the best possible DMT.
Resumo:
Making use of the empirical potential functions for peptide NH .. O bonds, developed in this laboratory, the relative stabilities of the rightand left-handed α-helical structures of poly-L-alanine have been investigated, by calculating their conformational energies (V). The value of Vmin of the right-handed helix (αP) is about - 10.4 kcal/mole, and that of the left-handed helix (αM) is about - 9.6 kcal/mole, showing that the former is lower in energy by 0.8 kcal/mole. The helical parameters of the stable conformation of αP are n ∼ 3.6 and h ∼ 1.5 Å. The hydrogen bond of length 2.85 Å and nonlinearity of about 10° adds about 4.0 kcal/ mole to the stabilising energy of the helix in the minimum enregy region. The energy minimum is not sharply defined, but occurs over a long valley, suggesting that a distribution of conformations (φ{symbol}, ψ) of nearly the same energy may occur for the individual residues in a helix. The experimental data of a-helical fibres of poly-L-alanine are in good agreement with the theoretical results for αP. In the case of proteins, the mean values of (φ{symbol}, ψ) for different helices are distributed, but they invariably occur within the contour for V = Vmin + 2 kcal/mole for αP.
Resumo:
In this paper, direct numerical simulation of autoignition in an initially non-premixed medium under isotropic, homogeneous, and decaying turbulence is presented. The pressure-based method developed herein is a spectral implementation of the sequential steps followed in the predictor-corrector type of algorithms; it includes the effects of density fluctuations caused by spatial inhomogeneities ill temperature and species. The velocity and pressure field are solved in the spectral space while the scalars and density field are solved in the physical space. The presented results reveal that the autoignition spots originate and evolve at locations where (1) the composition corresponds to a small range around a specific mixture fraction, and (2) the conditional scaler dissipation rate is low. A careful examination of the data obtained indicates that the autoignition spots originate in the vortex cores, and the hot gases travel outward as combustion progresses. Hence, the applicability of the transient laminar flamelet model for this problem is questioned. The dependence of autoignition characteristics on parameters such as (1) die initial eddy-turnover time and (2) the initial ratio of length scale of scalars to that of velocities are investigated. Certain implications of new results on the conditional moment closure modeling are discussed.
Resumo:
Processes in complex chemical systems, such as macromolecules, electrolytes, interfaces, micelles and enzymes, can span several orders of magnitude in length and time scales. The length and time scales of processes occurring over this broad time and space window are frequently coupled to give rise to the control necessary to ensure specificity and the uniqueness of the chemical phenomena. A combination of experimental, theoretical and computational techniques that can address a multiplicity of length and time scales is required in order to understand and predict structure and dynamics in such complex systems. This review highlights recent experimental developments that allow one to probe structure and dynamics at increasingly smaller length and time scales. The key theoretical approaches and computational strategies for integrating information across time-scales are discussed. The application of these ideas to understand phenomena in various areas, ranging from materials science to biology, is illustrated in the context of current developments in the areas of liquids and solvation, protein folding and aggregation and phase transitions, nucleation and self-assembly.
Resumo:
In this work, an attempt is made to gain a better understanding of the breakage of low-viscosity drops in turbulent flows by determining the dynamics of deformation of an inviscid drop in response to a pressure variation acting on the drop surface. Known scaling relationships between wavenumbers and frequencies, and between pressure fluctuations and velocity fluctuations in the inertial subrange are used in characterizing the pressure fluctuation. The existence of a maximum stable drop diameter d(max) follows once scaling laws of turbulent flow are used to correlate the magnitude of the disruptive forces with the duration for which they act. Two undetermined dimensionless quantities, both of order unity, appear in the equations of continuity, motion, and the boundary conditions in terms of pressure fluctuations applied on the surface. One is a constant of proportionality relating root-mean-square values of pressure and velocity differences between two points separated by a distance l. The other is a Weber number based on turbulent stresses acting on the drop and the resisting stresses in the drop due to interfacial tension. The former is set equal to 1, and the latter is determined by studying the interaction of a drop of diameter equal to d(max) with a pressure fluctuation of length scale equal to the drop diameter. The model is then used to study the breakage of drops of diameter greater than d(max) and those with densities different from that of the suspending fluid. It is found that, at least during breakage of a drop of diameter greater than d(max) by interaction with a fluctuation of equal length scale, a satellite drop is always formed between two larger drops. When very large drops are broken by smaller-length-scale fluctuations, highly deformed shapes are produced suggesting the possibility of further fragmentation due to instabilities. The model predicts that as the dispersed-phase density increases, d(max) decreases.