329 resultados para Stability criteria

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm for optimal allocation of reactive power in AC/DC system using FACTs devices, with an objective of improving the voltage profile and also voltage stability of the system has been presented. The technique attempts to utilize fully the reactive power sources in the system to improve the voltage stability and profile as well as meeting the reactive power requirements at the AC-DC terminals to facilitate the smooth operation of DC links. The method involves successive solution of steady-state power flows and optimization of reactive power control variables with Unified Power Flow Controller (UPFC) using linear programming technique. The proposed method has been tested on a real life equivalent 96-bus AC and a two terminal DC system under normal and contingency conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of developing L2-stability criteria for feedback systems with a single time-varying gain, which impose average variation constraints on the gain is treated. A unified approach is presented which facilitates the development of such average variation criteria for both linear and nonlinear systems. The stability criteria derived here are shown to be more general than the existing results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A frequency-domain positivity condition is derived for linear time-varying operators in2and is used to develop2stability criteria for linear and nonlinear feedback systems. These criteria permit the use of a very general class of operators in2with nonstationary kernels, as multipliers. More specific results are obtained by using a first-order differential operator with a time-varying coefficient as multiplier. Finally, by employing periodic multipliers, improved stability criteria are derived for the nonlinear damped Mathieu equation with a forcing function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A class of feedback systems, consisting of dynamical non-linear subsystems which arise in many diverse control applications, is analyzed for L2-stability. It is shown that, although a transformation of these systems to the familiar Lur'e configuration does not seem to be possible, a one-to-one correspondence may be effected between the stability properties of these and the Lur'e systems. Interesting stability criteria are developed by exploiting this characteristic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lateral displacement and global stability are the two main stability criteria for soil nail walls. Conventional design methods do not adequately address the deformation behaviour of soil nail walls, owing to the complexity involved in handling a large number of influencing factors. Consequently, limited methods of deformation estimates based on empirical relationships and in situ performance monitoring are available in the literature. It is therefore desirable that numerical techniques and statistical methods are used in order to gain a better insight into the deformation behaviour of soil nail walls. In the present study numerical experiments are conducted using a 2 4 factorial design method. Based on analysis of the maximum lateral deformation and factor-of-safety observations from the numerical experiments, regression models for maximum lateral deformation and factor-of-safety prediction are developed and checked for adequacy. Selection of suitable design factors for the 2 4 factorial design of numerical experiments enabled the use of the proposed regression models over a practical range of soil nail wall heights and in situ soil variability. It is evident from the model adequacy analyses and illustrative example that the proposed regression models provided a reasonably good estimate of the lateral deformation and global factor of safety of the soil nail walls.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A literal Liapunov stability analysis of a spacecraft with flexible appendages often requires a division of the associated dynamic potential into as many dependent parts as the number of appendages. First part of this paper exposes the stringency in the stability criteria introduced by such a division and shows it to be removable by a “reunion policy.” The policy enjoins the analyst to piece together the sets of criteria for each part. Employing reunion the paper then compares four methods of the Liapunov stability analysis of hybrid dynamical systems illustrated by an inertially coupled, damped, gravity stabilized, elastic spacecraft with four gravity booms having tip masses and a damper rod, all skewed to the orbital plane. The four methods are the method of test density function, assumed modes, and two and one-integral coordinates. Superiority of one-integral coordinate approach is established here. The design plots demonstrate how elastic effects delimit the satellite boom length.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study in great detail a system of three first-order ordinary differential equations describing a homopolar disk dynamo (HDD). This system displays a large variety of behaviors, both regular and chaotic. Existence of periodic solutions is proved for certain ranges of parameters. Stability criteria for periodic solutions are given. The nonintegrability aspects of the HDD system are studied by investigating analytically the singularity structure of the system in the complex domain. Coexisting attractors (including period-doubling sequence) and coexisting strange attractors appear in some parametric regimes. The gluing of strange attractors and the ungluing of a strange attractor are also shown to occur. A period of bifurcation leading to chaos, not observed for other chaotic systems, is shown to characterize the chaotic behavior in some parametric ranges. The limiting case of the Lorenz system is also studied and is related to HDD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead telluride (PbTe) is an established thermoelectric material which can be alloyed with sulphur and selenium to further enhance the thermoelectric properties. Here, a first principles study of ternary alloys PbSxTe(1-x) and PbSexTe(1-x) (0 <= x <= 1) based on the Virtual Crystal Approximation (VCA) is presented for different ratios of the isoelectronic atoms in each series. Equilibrium lattice parameters and elastic constants have been calculated and compared with the reported data. Anisotropy parameter calculated from the stiffness constants showed a slight improvement in anisotropy of elastic properties of the alloys over undoped PbTe. Furthermore, the alloys satisfied the predicted stability criteria from the elastic constants, showing stable structures, which agreed with the previously reported experimental results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Criteria for the L2-stability of linear and nonlinear time-varying feedback systems are given. These are conditions in the time domain involving the solution of certain associated matrix Riccati equations and permitting the use of a very general class of L2-operators as multipliers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on is less restrictive than earlier criteria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the analysis of the absolute stability of a non-linear autonomous system which consists of a single non-linearity belonging to a particular class, in an otherwise linear feedback loop. It is motivated from the earlier Popovlike frequency-domain criteria using the ' multiplier ' eoncept and involves the construction of ' stability multipliers' with prescribed phase characteristics. A few computer-based methods by which this problem can be solved are indicated and it is shown that this constitutes a stop-by-step procedure for testing the stability properties of a given system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved sufficient conditions are derived for the exponential stability of a nonlinear time varying feedback system having a time invariant blockG in the forward path and a nonlinear time varying gain ϕ(.)k(t) in the feedback path. φ(.) being an odd monotone nondecreasing function. The resulting bound on $$\left( {{{\frac{{dk}}{{dt}}} \mathord{\left/ {\vphantom {{\frac{{dk}}{{dt}}} k}} \right. \kern-\nulldelimiterspace} k}} \right)$$ is less restrictive than earlier criteria.