92 resultados para Speech Acoustics
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose apractical, feature-level and score-level fusion approach by combining acoustic and estimated articulatory information for both text independent and text dependent speaker verification. From a practical point of view, we study how to improve speaker verification performance by combining dynamic articulatory information with the conventional acoustic features. On text independent speaker verification, we find that concatenating articulatory features obtained from measured speech production data with conventional Mel-frequency cepstral coefficients (MFCCs) improves the performance dramatically. However, since directly measuring articulatory data is not feasible in many real world applications, we also experiment with estimated articulatory features obtained through acoustic-to-articulatory inversion. We explore both feature level and score level fusion methods and find that the overall system performance is significantly enhanced even with estimated articulatory features. Such a performance boost could be due to the inter-speaker variation information embedded in the estimated articulatory features. Since the dynamics of articulation contain important information, we included inverted articulatory trajectories in text dependent speaker verification. We demonstrate that the articulatory constraints introduced by inverted articulatory features help to reject wrong password trials and improve the performance after score level fusion. We evaluate the proposed methods on the X-ray Microbeam database and the RSR 2015 database, respectively, for the aforementioned two tasks. Experimental results show that we achieve more than 15% relative equal error rate reduction for both speaker verification tasks. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Compressive sensing (CS) has been proposed for signals with sparsity in a linear transform domain. We explore a signal dependent unknown linear transform, namely the impulse response matrix operating on a sparse excitation, as in the linear model of speech production, for recovering compressive sensed speech. Since the linear transform is signal dependent and unknown, unlike the standard CS formulation, a codebook of transfer functions is proposed in a matching pursuit (MP) framework for CS recovery. It is found that MP is efficient and effective to recover CS encoded speech as well as jointly estimate the linear model. Moderate number of CS measurements and low order sparsity estimate will result in MP converge to the same linear transform as direct VQ of the LP vector derived from the original signal. There is also high positive correlation between signal domain approximation and CS measurement domain approximation for a large variety of speech spectra.
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
We propose a simple speech music discriminator that uses features based on HILN(Harmonics, Individual Lines and Noise) model. We have been able to test the strength of the feature set on a standard database of 66 files and get an accuracy of around 97%. We also have tested on sung queries and polyphonic music and have got very good results. The current algorithm is being used to discriminate between sung queries and played (using an instrument like flute) queries for a Query by Humming(QBH) system currently under development in the lab.
Resumo:
Non-uniform sampling of a signal is formulated as an optimization problem which minimizes the reconstruction signal error. Dynamic programming (DP) has been used to solve this problem efficiently for a finite duration signal. Further, the optimum samples are quantized to realize a speech coder. The quantizer and the DP based optimum search for non-uniform samples (DP-NUS) can be combined in a closed-loop manner, which provides distinct advantage over the open-loop formulation. The DP-NUS formulation provides a useful control over the trade-off between bitrate and performance (reconstruction error). It is shown that 5-10 dB SNR improvement is possible using DP-NUS compared to extrema sampling approach. In addition, the close-loop DP-NUS gives a 4-5 dB improvement in reconstruction error.
Resumo:
We introduce a novel temporal feature of a signal, namely extrema-based signal track length (ESTL) for the problem of speech segmentation. We show that ESTL measure is sensitive to both amplitude and frequency of the signal. The short-time ESTL (ST_ESTL) shows a promising way to capture the significant segments of speech signal, where the segments correspond to acoustic units of speech having distinct temporal waveforms. We compare ESTL based segmentation with ML and STM methods and find that it is as good as spectral feature based segmentation, but with lesser computational complexity.
Resumo:
Narrowband spectrograms of voiced speech can be modeled as an outcome of two-dimensional (2-D) modulation process. In this paper, we develop a demodulation algorithm to estimate the 2-D amplitude modulation (AM) and carrier of a given spectrogram patch. The demodulation algorithm is based on the Riesz transform, which is a unitary, shift-invariant operator and is obtained as a 2-D extension of the well known 1-D Hilbert transform operator. Existing methods for spectrogram demodulation rely on extension of sinusoidal demodulation method from the communications literature and require precise estimate of the 2-D carrier. On the other hand, the proposed method based on Riesz transform does not require a carrier estimate. The proposed method and the sinusoidal demodulation scheme are tested on real speech data. Experimental results show that the demodulated AM and carrier from Riesz demodulation represent the spectrogram patch more accurately compared with those obtained using the sinusoidal demodulation. The signal-to-reconstruction error ratio was found to be about 2 to 6 dB higher in case of the proposed demodulation approach.
Resumo:
Acoustic impedance of a termination, or of a passive subsystem, needs to be measured not only for acoustic lining materials but also in the exhaust systems of flow machinery, where mean flow introduces peculiar problems. Out of the various methods of measurement of acoustic impedance, the discrete frequency, steady state, impedance tube method [1] is most reliable, though time consuming, and requires no special instrumentation.
Resumo:
We are addressing the problem of jointly using multiple noisy speech patterns for automatic speech recognition (ASR), given that they come from the same class. If the user utters a word K times, the ASR system should try to use the information content in all the K patterns of the word simultaneously and improve its speech recognition accuracy compared to that of the single pattern based speech recognition. T address this problem, recently we proposed a Multi Pattern Dynamic Time Warping (MPDTW) algorithm to align the K patterns by finding the least distortion path between them. A Constrained Multi Pattern Viterbi algorithm was used on this aligned path for isolated word recognition (IWR). In this paper, we explore the possibility of using only the MPDTW algorithm for IWR. We also study the properties of the MPDTW algorithm. We show that using only 2 noisy test patterns (10 percent burst noise at -5 dB SNR) reduces the noisy speech recognition error rate by 37.66 percent when compared to the single pattern recognition using the Dynamic Time Warping algorithm.
Resumo:
This paper investigates the problem of designing reverse channel training sequences for a TDD-MIMO spatial-multiplexing system. Assuming perfect channel state information at the receiver and spatial multiplexing at the transmitter with equal power allocation to them dominant modes of the estimated channel, the pilot is designed to ensure an stimate of the channel which improves the forward link capacity. Using perturbation techniques, a lower bound on the forward link capacity is derived with respect to which the training sequence is optimized. Thus, the reverse channel training sequence makes use of the channel knowledge at the receiver. The performance of orthogonal training sequence with MMSE estimation at the transmitter and the proposed training sequence are compared. Simulation results show a significant improvement in performance.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
We propose a novel technique for robust voiced/unvoiced segment detection in noisy speech, based on local polynomial regression. The local polynomial model is well-suited for voiced segments in speech. The unvoiced segments are noise-like and do not exhibit any smooth structure. This property of smoothness is used for devising a new metric called the variance ratio metric, which, after thresholding, indicates the voiced/unvoiced boundaries with 75% accuracy for 0dB global signal-to-noise ratio (SNR). A novelty of our algorithm is that it processes the signal continuously, sample-by-sample rather than frame-by-frame. Simulation results on TIMIT speech database (downsampled to 8kHz) for various SNRs are presented to illustrate the performance of the new algorithm. Results indicate that the algorithm is robust even in high noise levels.
Resumo:
We investigate the use of a two stage transform vector quantizer (TSTVQ) for coding of line spectral frequency (LSF) parameters in wideband speech coding. The first stage quantizer of TSTVQ, provides better matching of source distribution and the second stage quantizer provides additional coding gain through using an individual cluster specific decorrelating transform and variance normalization. Further coding gain is shown to be achieved by exploiting the slow time-varying nature of speech spectra and thus using inter-frame cluster continuity (ICC) property in the first stage of TSTVQ method. The proposed method saves 3-4 bits and reduces the computational complexity by 58-66%, compared to the traditional split vector quantizer (SVQ), but at the expense of 1.5-2.5 times of memory.
Resumo:
We are addressing the novel problem of jointly evaluating multiple speech patterns for automatic speech recognition and training. We propose solutions based on both the non-parametric dynamic time warping (DTW) algorithm, and the parametric hidden Markov model (HMM). We show that a hybrid approach is quite effective for the application of noisy speech recognition. We extend the concept to HMM training wherein some patterns may be noisy or distorted. Utilizing the concept of ``virtual pattern'' developed for joint evaluation, we propose selective iterative training of HMMs. Evaluating these algorithms for burst/transient noisy speech and isolated word recognition, significant improvement in recognition accuracy is obtained using the new algorithms over those which do not utilize the joint evaluation strategy.
Resumo:
We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single Hidden Markov Model. It is shown that such a solution is possible by aligning the K patterns using the proposed Multi Pattern Dynamic Time Warping algorithm followed by the Constrained Multi Pattern Viterbi Algorithm The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB Signal to Noise Ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.