36 resultados para Species distribution
em Indian Institute of Science - Bangalore - Índia
Resumo:
Bush frogs of the genus Raorchestes are distributed mainly in the Western Ghats Escarpment of Peninsular India. The inventory of species in this genus is incomplete and there is ambiguity in the systematic status of species recognized by morphological criteria. To address the dual problem of taxon sampling and systematic uncertainty in bush frogs, we used a large-scale spatial sampling design, explicitly incorporating the geographic and ecological heterogeneity of the Western Ghats. We then used a hierarchical multi-criteria approach by combining mitochondrial phylogeny, genetic distance, geographic range, morphology and advertisement call to delimit bush frog lineages. Our analyses revealed the existence of a large number of new lineages with varying levels of genetic divergence. Here, we provide diagnoses and descriptions for nine lineages that exhibit divergence across multiple axes. The discovery of new lineages that exhibit high divergence across wide ranges of elevation and across the major massifs highlights the large gaps in historical sampling. These discoveries underscore the significance of addressing inadequate knowledge of species distribution, namely the ``Wallacean shortfall'', in addressing the problem of taxon sampling and unknown diversity in tropical hotspots. A biogeographically informed sampling and analytical approach was critical in detecting and delineating lineages in a consistent manner across the genus. Through increased taxon sampling, we were also able to discern a number of well-supported sub-clades that were either unresolved or absent in earlier phylogenetic reconstructions and identify a number of shallow divergent lineages which require further examination for assessment of their taxonomic status.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
The effect of electromagnetic stirring of melt on the final macrosegregation in the continuous casting of an aluminium alloy billet is studied numerically. A continuum mixture model for solidification in presence of electromagnetic stirring is presented. As a case study, simulations are performed for direct chill (DC) casting of an Al-Cu alloy and the effect of electromagnetic stirring on macrosegregation is analysed. The model predicts the temperature, velocity, and species distribution in the mold. As a special case, we have also studied the case in which dendritic particles are fragmented at the interface due to vigorous electromagnetic stirring. For this case, an additional conservation equation for the transport of solid fraction is solved. For modeling the resistance offered by moving solid crystals, a switching function in the momentum equations is used for variation of viscosity. The fragmentation and transport of dendritic particles has a profound effect on the final macrosegregation and microstructure of the solidified billet. It is found that the application of electromagnetic stirring in continuous casting of billets results in better temperature uniformity and macrosegregation pattern.
Resumo:
A herbarium-based database (virtual herbarium) is a referral system for plants that maximizes the usefulness of the collections. The information content of such a database is essentially built on the voucher specimens that the herbarium has in its care. The present article reports on the construction of a `virtual herbarium' for the state-wide collection of flowering plants in the Herbarium JCB housed at the Centre for Ecological Sciences, Indian Institute of Science, Bangalore, that is expected to be launched soon. The taxonomic data on each species include all information presented on the herbarium specimen label, namely species name, author citation, sub-species if any, variety if any, family, subfamily, collection number, locations, date of collection, habitat and the collector's name. The data further comprise `flora' in which the species are described. Additional information includes the nomenclature update according to `The Plant List', a detailed description, phenology, species distribution, threat status and comments on any special features of the taxon. The live images of the species provided in the database form an information synergy on the species. This initiative is the first of its kind for herbaria in peninsular India.
Resumo:
Differential occupancy of space can lead to species coexistence. The fig-fig wasp pollination system hosts species-specific pollinating and parasitic wasps that develop within galls in a nursery comprising a closed inflorescence, the syconium. This microcosm affords excellent opportunities for investigating spatial partitioning since it harbours a closed community in which all wasp species are dependent on securing safe sites inside the syconium for their developing offspring while differing in life history, egg deposition strategies and oviposition times relative to nursery development. We determined ontogenetic changes in oviposition sites available to the seven-member fig wasp community of Ficus racemosa comprising pollinators, gallers and parasitoids. We used species distribution models (SDMs) for the first time at a microcosm scale to predict patterns of spatial occurrence of nursery occupants. SDMs gave high true-positive and low false-positive site occupancy rates for most occupants indicating species specificity in oviposition sites. The nursery microcosm itself changed with syconium development and sequential egg-laying by different wasp species. The number of sites occupied by offspring of the different wasp species was negatively related to the risk of syconium abortion by the plant host following oviposition. Since unpollinated syconia are usually aborted, parasitic wasps ovipositing into nurseries at the same time as the pollinator targeted many sites, suggesting response to lower risk of syconium abortion owing to reduced risk of pollination failure compared to those species ovipositing before pollination. Wasp life history and oviposition time relative to nursery development contributed to the co-existence of nursery occupants.
Resumo:
Culturally protected forest patches or sacred groves have been the integral part of many traditional societies. This age old tradition is a classic instance of community driven nature conservation sheltering native biodiversity and supporting various ecosystem functions particularly hydrology. The current work in Central Western Ghats of Karnataka, India, highlights that even small sacred groves amidst humanised landscapes serve as tiny islands of biodiversity, especially of rare and endemic species. Temporal analysis of landuse dynamics reveals the changing pattern of the studied landscape. There is fast reduction of forest cover (15.14-11.02 %) in last 20 years to meet up the demand of agricultural land and plantation programs. A thorough survey and assessment of woody endemic species distribution in the 25 km(2) study area documented presence of 19 endemic species. The distribution of these species is highly skewed towards the culturally protected patches in comparison to other land use elements. It is found that, among the 19 woody endemic species, those with greater ecological amplitude are widely distributed in the studied landscape in groves as well as other land use forms whereas, natural population of the sensitive endemics are very much restricted in the sacred grove fragments. The recent degradation in the sacred grove system is perhaps, due to weakening of traditional belief systems and associated laxity in grove protection leading to biotic disturbances. Revitalisation of traditional practices related to conservation of sacred groves can go a long way in strengthening natural ecological systems of fragile humid tropical landscape.
Resumo:
An annotated checklist of 284 species of amphibians of India accommodated under 50 genera and 14 families is provided. Synonyms, English names, type localities, deposition of type specimens, type specimen availability and distributional records in India and outside India are provided for all the species. Among the 284 species of amphibians from India, 132 are endemic to Western Ghats; 29 to Northeastern India; and 5 to Andaman Nicobar islands. Species discovery patterns from the various biogeographic zones in India are discussed in detail. Cumulative discovery pattern with special reference to the genera Fejervarya (17 species), Nyctibatrachus (16 species), Indirana (10 species), Micrixalus (11 species), Philautus (46 species) and Gegeneophis (10 species) are also discussed.
Resumo:
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.
Resumo:
1 Species-accumulation curves for woody plants were calculated in three tropical forests, based on fully mapped 50-ha plots in wet, old-growth forest in Peninsular Malaysia, in moist, old-growth forest in central Panama, and in dry, previously logged forest in southern India. A total of 610 000 stems were identified to species and mapped to < Im accuracy. Mean species number and stem number were calculated in quadrats as small as 5 m x 5 m to as large as 1000 m x 500 m, for a variety of stem sizes above 10 mm in diameter. Species-area curves were generated by plotting species number as a function of quadrat size; species-individual curves were generated from the same data, but using stem number as the independent variable rather than area. 2 Species-area curves had different forms for stems of different diameters, but species-individual curves were nearly independent of diameter class. With < 10(4) stems, species-individual curves were concave downward on log-log plots, with curves from different forests diverging, but beyond about 104 stems, the log-log curves became nearly linear, with all three sites having a similar slope. This indicates an asymptotic difference in richness between forests: the Malaysian site had 2.7 times as many species as Panama, which in turn was 3.3 times as rich as India. 3 Other details of the species-accumulation relationship were remarkably similar between the three sites. Rectangular quadrats had 5-27% more species than square quadrats of the same area, with longer and narrower quadrats increasingly diverse. Random samples of stems drawn from the entire 50 ha had 10-30% more species than square quadrats with the same number of stems. At both Pasoh and BCI, but not Mudumalai. species richness was slightly higher among intermediate-sized stems (50-100mm in diameter) than in either smaller or larger sizes, These patterns reflect aggregated distributions of individual species, plus weak density-dependent forces that tend to smooth the species abundance distribution and 'loosen' aggregations as stems grow. 4 The results provide support for the view that within each tree community, many species have their abundance and distribution guided more by random drift than deterministic interactions. The drift model predicts that the species-accumulation curve will have a declining slope on a log-log plot, reaching a slope of O.1 in about 50 ha. No other model of community structure can make such a precise prediction. 5 The results demonstrate that diversity studies based on different stem diameters can be compared by sampling identical numbers of stems. Moreover, they indicate that stem counts < 1000 in tropical forests will underestimate the percentage difference in species richness between two diverse sites. Fortunately, standard diversity indices (Fisher's sc, Shannon-Wiener) captured diversity differences in small stem samples more effectively than raw species richness, but both were sample size dependent. Two nonparametric richness estimators (Chao. jackknife) performed poorly, greatly underestimating true species richness.
Resumo:
A new species of Ptychozoon is described from the central portion of the Nicobar Archipelago, Bay of Bengal, India. It has been formerly referred to P. kuhli, a species widely distributed in Sundaland. Ptychozoon nicobarensis sp. nov. reaches an SVL of 100.3 mm, and is diagnosable from congeneric species in showing the following combination of characters: dorsum with a tan vertebral stripe, lacking dark transverse bars; supranasals in contact; cutaneous expansions on sides of head; absence of predigital notch in preantebrachial cutaneous expansion; imbricate parachute support scales; four irregular rows of low, rounded enlarged scales on dorsum; 20-29 scales across widest portion of tail terminus; three indistinct chevrons on dorsum; 7-11 pairs of preanal pores; femoral pores absent; tail with an expanded terminal flap and weak lobe fusion at proximal border of tail terminus. The curious distribution of the new species, centred around the central Nicobars is speculated to be the result of competition with and/or predation by large gekkonid species, to the north (Gekko verreauxi) and south (G. smithii) of the group of islands occupied by the new Ptychozoon from the central Nicobars.
Resumo:
Magic-angle-spinning NMR has been used to study Si---O---Si bond-angle distributions associated with various structural elements, Qn, present in lithium silicate glasses of different compositions. It is shown that glasses contain a plurality of structural elements with a broad distribution of Si---O---Si bond angles, and that the width of the distribution is characteristic of a particular Qn species
Resumo:
A survey of the marine gastropod genus Conus Linnaeus was conducted along the TamilNadu Coast of India to explore the regional geographic distribution and diversity. The 60 species observed increased the number of Indian Conidae from 77 to 81. Conus imperialis Linne, C. mitratus Hwass in Bruguiere, C. striolatus Kiener and C. violaceus Gmelin are newly recorded from the study area. Conus amadis Gmelin was the most widely distributed species. The highest diversity (48 species) occurred in the Gulf of Mannar, followed by 22 species from northern, six from southern, and five from the Palk Bay regions. We suggest that the rich diversity recorded in the Gulf of Mannar reflects the physical conditions, microhabitats and required resources such as food and shelter that favour the occurrence of the large number of Conus species.
Resumo:
A knowledge of the concentration distribution around a burning droplet is essential if accurate estimates are to be made of the transport coefficients in that region which influence the burning rate. There are two aspects of this paper; (1) determination of the concentration profiles, using the simple assumption of constant binary diffusion coefficients for all species, and comparison with experiments; and (2) postulation of a new relation for the therinal conductivity, which takes into account the variations of both temperature and concentrations of various species. First, the theoretical concentration profiles are evaluated and compared with experimental results reported elsewhere [5]. It is found that the agreement between the theory and experiment is fairly satisfactory. Then, by the use of these profiles and the relations proposed in the literature for the thermal conductivity of a mixture of nonpolar gases, a new relation for thermal conductivity: K = (A1 + B1 T) + (A2 + B2 T) xr (21). is suggested for analytical solutions of droplet combustion problems. Equations are presented to evaluate A1, A2, B1, and B2, and values of these terms for a few hydrocarbons are tabulated.
Resumo:
The construction and characterization of two genome-specific recombinant DNA clones from B. nigra are described. Southern analysis showed that the two clones belong to a dispersed repeat family. They differ from each other in their length, distribution and sequence, though the average GC content is nearly the same (45%). These B genome-specific repeats have been used to analyse the phylogenetic relationships between cultivated and wild species of the family Brassicaceae.