3 resultados para Soy yogurt
em Indian Institute of Science - Bangalore - Índia
Resumo:
Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.
Resumo:
A new biobased composite was developed by adding soy flour (SF) to polypropylene (PP). This composite shows an enhanced tensile strength and modulus but decrease in elongation at break. The compatibilizer (coupling agent) appears to have a synergistic effect on tensile strength. The presence of the compatibilizer improves the dispersion of SF in the PP matrix. The addition of glycerol plasticizer to the composite improves the processability resulting in improved performance, as compared to composites without glycerol plasticizer. The optimal compatibilizer content appears to be 6%.
Resumo:
Raffinose oligosaccharides (RO) are the major factors responsible for flatulence following ingestion of soybean-derived products. Removal of RO from seeds or soymilk would then have a positive impact on the acceptance of soy-based foods. In this study, alpha-galactosidase from Aspergillus oryzae was entrapped in gelatin using formaldehyde as the hardener. The immobilization yield was 64.3% under the optimum conditions of immobilization. The immobilized alpha-galactosidase showed a shift in optimum pH from 4.8 to 5.4 in acetate buffer. The optimum temperature also shifted from 50 degrees C to 57 degrees C compared with soluble enzyme. Immobilized alpha-galactosidase was used in batch, repeated batch and continuous mode to degrade RO present in soymilk. In the repeated batch, 45% reduction of RO was obtained in the fourth cycle. The performance of immobilized alpha-galactosidase was tested in a fluidized bed reactor at different flow rates and 86% reduction of RO in soymilk was obtained at 25 ml h(-1) flow rate. The study revealed that immobilized alpha-galactosidase in continuous mode is efficient in reduction of RO present in soymilk.