4 resultados para South america

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we report chromium isotope compositions, expressed as delta Cr-53/ 52 in per mil (&) relative to NIST 979, measured in selected Cr-rich minerals and rocks formed by the primary magmatic as well as the secondary metamorphic and weathering processes. The main objectives of this study were: (i) to further constrain the isotope composition of the Earth's mantle Cr inventory and its possible variation during geological history, based on the analysis of globally distributed and stratigraphically constrained mantle-derived chromites; and (ii) to investigate the magnitude and systematics of Cr isotope fractionation during oxidative weathering and secondary alteration (i. e., hydration, serpentinization) of the magmatic Cr sources. Specifically, we analyzed delta Cr-53/ 52 in a set of globally distributed mantle-derived chromites (FeMgCr2O4, n = 30) collected from various locations in Europe, Asia, Africa and South America, and our results confirm that a chromite-hosted Earth's mantle Cr inventory is uniform at - 0.079 +/- 0.129& (2SD), which we named here as a ` canonical' mantle d 53/ 52 Cr signature. Furthermore our dataset of stratigraphically constrained chromites, whose crystallization ages cover most of the Earth's geological history, indicate that the bulk Cr isotope composition of the chromite-hosted mantle inventory has remained uniform, within about +/- 0.100&, since at least the Early Archean times (similar to 3500 million years ago, Ma). To investigate the systematics of Cr isotope fractionation associated with alteration processes we analyzed a number of secondary Cr-rich minerals and variably altered ultramafic rocks (i. e., serpentinized harzburgites, lherzolites) that revealed large positive delta Cr-53/ 52 anomalies that are systematically shifted to higher values with an increasing degree of alteration and serpentinization. The degree of aqueous alteration and serpentinization was quantified by the abundances of fluid-mobile (Rb, K) elements, and by the Loss On Ignition (LOI) parameter, which determines the amount of structurally bound water (OH/ H2O) present in secondary hydrated minerals like serpentine. Overall, we observed that altered ultramafic rocks that yielded the highest LOI values, and the lowest amounts of fluid mobile elements, also yielded the heaviest delta Cr-53/ 52 signatures. Therefore, we conclude that secondary alteration (i.e., hydration, serpentinization) of ultramafic rocks in near-surface oxidative environments tend to shift the bulk Cr isotope composition of the weathered products to isotopically heavier values, pointing to a dynamic redox cycling of Cr in the Earth's crustal and near-surface environments. Hence, if validated by future

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two atmospheric inversions (one fine-resolved and one process-discriminating) and a process-based model for land surface exchanges are brought together to analyse the variations of methane emissions from 1990 to 2009. A focus is put on the role of natural wetlands and on the years 2000-2006, a period of stable atmospheric concentrations. From 1990 to 2000, the top-down and bottom-up visions agree on the time-phasing of global total and wetland emission anomalies. The process-discriminating inversion indicates that wetlands dominate the time-variability of methane emissions (90% of the total variability). The contribution of tropical wetlands to the anomalies is found to be large, especially during the post-Pinatubo years (global negative anomalies with minima between -41 and -19 Tg yr(-1) in 1992) and during the alternate 1997-1998 El-Nino/1998-1999 La-Nina (maximal anomalies in tropical regions between +16 and +22 Tg yr(-1) for the inversions and anomalies due to tropical wetlands between +12 and +17 Tg yr(-1) for the process-based model). Between 2000 and 2006, during the stagnation of methane concentrations in the atmosphere, the top-down and bottom-up approaches agree on the fact that South America is the main region contributing to anomalies in natural wetland emissions, but they disagree on the sign and magnitude of the flux trend in the Amazon basin. A negative trend (-3.9 +/- 1.3 Tg yr(-1)) is inferred by the process-discriminating inversion whereas a positive trend (+1.3 +/- 0.3 Tg yr(-1)) is found by the process model. Although processed-based models have their own caveats and may not take into account all processes, the positive trend found by the B-U approach is considered more likely because it is a robust feature of the process-based model, consistent with analysed precipitations and the satellite-derived extent of inundated areas. On the contrary, the surface-data based inversions lack constraints for South America. This result suggests the need for a re-interpretation of the large increase found in anthropogenic methane inventories after 2000.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, using idealized climate model simulations, we investigate the biogeophysical effects of large-scale deforestation on monsoon regions. We find that the remote forcing from large-scale deforestation in the northern middle and high latitudes shifts the Intertropical Convergence Zone southward. This results in a significant decrease in precipitation in the Northern Hemisphere monsoon regions (East Asia, North America, North Africa, and South Asia) and moderate precipitation increases in the Southern Hemisphere monsoon regions (South Africa, South America, and Australia). The magnitude of the monsoonal precipitation changes depends on the location of deforestation, with remote effects showing a larger influence than local effects. The South Asian Monsoon region is affected the most, with 18% decline in precipitation over India. Our results indicate that any comprehensive assessment of afforestation/reforestation as climate change mitigation strategies should carefully evaluate the remote effects on monsoonal precipitation alongside the large local impacts on temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the fine-scale structure of the diurnal variability of ground-based lightning is systematically compared with satellite-based rain. At the outset, it is shown that tropical variability of lightning exhibits a prominent diurnal mode, much like rain. A comparison of the geographical distribution of the timing of the diurnal maximum shows that there is very good agreement between the two observables over continental and coastal regions throughout the tropics. Following this global tropical comparison, we focus on two regions, Borneo and equatorial South America, both of which show the interplay between oceanward and landward propagations of the phase of the diurnal maximum. Over Borneo, both rain and lightning clearly show a climatological cycle of ``breathing in'' (afternoon to early morning) and ``breathing out'' (morning to early afternoon). Over the equatorial east coast of South America, landward propagation is noticed in rain and lightning from early afternoon to early morning. Along the Pacific coast of South America, both rain and lightning show oceanward propagation. Though qualitatively consistent, over both regions the propagation is seen to extend further in rainfall. Additionally, given that lightning highlights vigorous convection, the timing of its diurnal maximum often precedes that of rainfall in the convective life cycle. (C) 2015 Elsevier B.V. All rights reserved.