90 resultados para Solid Flow-rate

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mass flow rate, (m) over dot, associated with the lateral outflow of dry, cohesionless granular material through circular orifices of diameter D made in vertical walls of silos was measured experimentally in order to determine also the influence of the wall thickness of the silo, w. Geometrical arguments, based on the outflow happening, are given in order to have a general correlation for (m) over dot embracing both quantities, D and w. The angle of repose appears to be an important characterization factor in these kinds of flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HfO2 thin films deposited on Si substrate using electron beam evaporation, are evaluated for back-gated graphene transistors. The amount of O-2 flow rate, during vaporation is optimized for 35 nm thick HfO2 films, to achieve the best optical, chemical and electrical properties. It has been observed that with increasing oxygen flow rate, thickness of the films increased and refractive index decreased due to increase in porosity resulting from the scattering of the evaporant. The films deposited at low O-2 flow rates (1 and 3 SCCM) show better optical and compositional properties. The effects of post-deposition annealing and post-metallization annealing in forming gas ambience (FGA) on the optical and electrical properties of the films have been analyzed. The film deposited at 3 SCCM O-2 flow rate shows the best properties as measured on MOS capacitors. To evaluate the performance of device properties, back-gated bilayer graphene transistors on HfO2 films deposited at two O-2 flow rates of 3 and 20 SCCM have been fabricated and characterized. The transistor with HfO2 film deposited at 3 SCCM O-2 flow rate shows better electrical properties consistent with the observations on MOS capacitor structures. This suggests that an optimum oxygen pressure is necessary to get good quality films for high performance devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transesterification of methyl salicylate with phenol has been studied in vapour phase over solid acid catalysts such as ZrO2, MoO3 and SO42- or Mo(VI) ions modified zirconia. The catalytic materials were prepared and characterized for their total surface acidity, BET surface area and powder XRD patterns. The effect of mole-ratio of the reactants, catalyst bed temperature, catalyst weight, flow-rate of reactants, WHSV and time-on-stream on the conversion (%) of phenol and selectivity (%) of salol has been investigated. A good yield (up to 70%) of salol with 90% selectivity was observed when the reactions were carried out at a catalyst bed temperature of 200 degrees C and flow-rate of 10 mL/h in presence of Mo(VI)/ZrO2 as catalyst. The results have been interpreted based on the variation of acidic properties and powder XRD phases of zirconia on incorporation of SO42- or Mo(VI) ions. The effect of poisoning of acid sites of SO42- or Mo(VI) ions modified zirconia on total surface acidity, powder XRD phases and catalytic activity was also studied. Possible reaction mechanisms for the formation of salol and diphenyl ether over acid sites are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The humidity, heat flux and mass flow sensing capability of n-BaTiO3 and its solid solutions were evaluated based on their dissipation characteristics. The cubic/tetragonal phase content of the ceramics seem to play an important role in their sensitivity towards the measurand. The humidity-sensitive characteristics of these perovskites were studied with respect to different moisture sensitive coating materials. The sensor was also used to determine the heat of hydration during the curing process of cements and the mass flow rate of the gases. For all these applications, suitable operating points have been fixed from the highly non-linear I-V characteristics with the retention of good stability and high sensitivity. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of natural convection on the oscillatory flow in an open-ended pipe driven by a timewise sinusoidally varying pressure at one end and subjected to an ambient-to-cryogenic temperature difference across the ends, is numerically studied. Conjugate effects arising out of the interaction of oscillatory flow with heat conduction in the pipe wall are taken into account by considering a finite thickness wall with an insulated exterior surface. Two cases, namely, one with natural convection acting downwards and the other, with natural convection acting upwards, are considered. The full set of compressible flow equations with axissymmetry are solved using a pressure correction algorithm. Parametric studies are conducted with frequencies in the range 5-15 Hz for an end-to-end temperature difference of 200 and 50 K. Results are obtained for the variation of velocity, temperature. Nusselt number and the phase relationship between mass flow rate and temperature. It is found that the Rayleigh number has a minimal effect on the time averaged Nusselt number and phase angle. However, it does influence the local variation of velocity and Nusselt number over one cycle. The natural convection and pressure amplitude have influence on the energy flow through the gas and solid. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of metal hydride based solid sorption cooling systems depends on the driving pressure differential, and the rate of hydrogen transfer between coupled metal hydride beds during cooling and regeneration processes. Conventionally, the mid-plateau pressure difference obtained from `static' equilibrium PCT data are used for the thermodynamic analysis. It is well known that the processes are `dynamic' because the pressure and temperature, and hence the concentration of the hydride beds, are continuously changing. Keeping this in mind, the pair of La0.9Ce0.1Ni5 - LaNi4.7Al0.3 metal hydrides suitable for solid sorption cooling systems were characterised using both static and dynamic methods. It was found that the PCT characteristics, and the resulting enthalpy (Delta H) and entropy (Delta S) values, were significantly different for static and dynamic modes of measurements. In the present study, the solid sorption metal hydride cooling system is analysed taking in to account the actual variation in the pressure difference (Delta P) and the dynamic enthalpy values. Compared to `static' property based analysis, significant decrease in the driving potentials and transferrable amounts of hydrogen, leading to decrease in cooling capacity by 57.8% and coefficient of performance by 31.9% are observed when dynamic PCT data at the flow rate of 80 ml/min are considered. Copyright 2014 (C) Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fully developed pulsatile flow in a circular rigid tube is analysed by a microcontinuum approach. Solutions for radial variation of axial velocity and cell rotational velocity across the tube are obtained using the momentum integral method. Simplified forms of the solutions are presented for the relevant physiological data. Marked deviations in the results are observed when compared to a Newtonian fluid model. It is interesting to see that there is sufficient reduction in the mass flow rate, phase lag and friction due to the micropolar character of the fluid.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In secondary steelmaking, the enhancement of the reaction rate in the low carbon period during the decarburization of steel is considered the most effective method to produce ultralow carbon steel. In a previous study, it was revealed that the surface reaction is dominant during the final stage of the actual refining process. In order to improve the surface reaction rate, it is necessary to enlarge the reaction region, which is usually achieved by increasing the plume eye area. In this study, water model experiments were carried out to estimate the influence of bottom stirring conditions on the gas-liquid reaction rate; for this purpose, the deoxidation rate during the bottom bubbling process was measured. Five types of nozzle configurations were used to study the effect of the plume eye area on the reaction rate at various gas flow rates. The results reveal that the surface reaction rate is influenced by the gas flow rate and the plume eye area. An empirical correlation was developed for the reaction rate and the plume eye area. This correlation was applied to estimate the gas-liquid reaction rate mat the bath surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with the experimental and modeling studies on the smoldering rates of incense sticks as a function of ambient oxygen fraction in air, the flow velocity and size. The experimental results are obtained both for forward and reverse smolder conditions. The results are explained on the basis of surface combustion due to diffusion of oxygen to the surface by both free and forced convection supporting the heat transfer into the solid by conduction, into the stream by convection and the radiant heat transfer from the surface. The heat release at the surface is controlled by the convective transport of the oxidizer to the surface. To obtain the diffusion rates particularly for the reverse smolder, CFD calculations of fluid flow with along with a passive scalar are needed; these calculations have been made both for forward and reverse smolder. The interesting aspect of the CFD calculations is that while the Nusselt umber for forward smolder shows a clear root( Re-u) dependence ( Re-u = Flow Reynolds Number), the result for reverse smolder shows a peak in the variation with Reynolds number with the values lower than for forward smolder and unsteadiness in the flow beyond a certain flow rate. The results of flow behavior and Nusselt number are used in a simple model for the heat transfer at the smoldering surface to obtain the dependence of the smoldering rate on the diameter of the incense stick, the flow rate of air and the oxygen fraction. The results are presented in terms of a correlation for the non-dimensional smoldering rate with radiant flux from the surface and heat generation rate at the surface. The correlations appear reasonable for both forward and reverse smolder cases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An experimental flow loop with He II flow driven by fountain effect pumps (FEPs) is studied with respect to operation at different flow impedances and with thermal loads applied at different positions. The measured values of temperature, flow rate and pressure drop are compared with calculations resulting from a simplified model which assumes ideal performance of the porous plug and of the heat exchangers and which does not take into account Gorter-Mellink (GM) conduction. The main features of the loop are shown to be well described by this model. Refined calculations with a more complex model, including GM conduction of the He II, are only required for predicting the temperature distribution in some discrete regions of the loop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We use a path-integral approach to calculate the distribution P(w, t) of the fluctuations in the work W at time t of a polymer molecule (modeled as an elastic dumbbell in a viscous solvent) that is acted on by an elongational flow field having a flow rate (gamma) over dot. We find that P(w, t) is non-Gaussian and that, at long times, the ratio P(w, t)/ P (-w, t) is equal to expw/(k(B)T)], independent of (gamma) over dot. On the basis of this finding, we suggest that polymers in elongational flows satisfy a fluctuation theorem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Flow of liquid/liquid dispersions have been investigated in a Hele-Shaw cell which contained a thin disk held between two parallel plates. This device offers a well defined flow field and also permits visual observation of the dispersed drop movement. The dispersed drops coalesce with the disk for the systems where the dispersed phase wets the disk surface. The dispersed phase accumulate at the downstream end of the disk and they detach from there as blobs. Through an accurate measurement of accumulated dispersed phase volume, the coalescence rate was determined. The coalescence efficiency in the Hele Shaw cell is determined by dividing the coalescence hate by the undisturbed flow rate of the dispersed phase through an area equal to the projected area of the disk on a plane normal to the flow direction. The coalescence efficiency first increases and then decreases with the flow rate of dispersion. The coalescence rate/disk dimensions increases with the decrease in the disk dimensions. The rate of coalescence increases with the increase in the dispersed drop diameter and it decreases with the increase in the continuous phase viscosity. The presence of surfactants reduces the coalescence rate. All these results are quantitatively explained through a model, which takes into account several important features like various mechanism of drainage, the roles of dispersion and continuous phase viscosities, and the drop deformation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is important to know and to quantify the liquid holdups both dynamic and static at local levels as it will lead to understand various blast furnace phenomena properly such as slag/metal.gas.solid reactions, gas flow behaviour and interfacial area between the gas/solid/liquid. In the present study, considering the importance of local liquid holdup and non-availability of holdup data in these systems, an attempt has been made to quantify the local holdups in the dropping and around raceway zones in a cold model study using a non-wetting packing for liquid. In order to quantify the liquid holdups at microscopic level, a previously developed technique, X-ray radiography, has been used. It is observed that the liquid flows in preferred paths or channels which carry droplets/rivulets. It has been found that local holdup in some regions of the packed bed is much higher than average at a particular flow rate and this can have important consequences for the correct modelling of such systems.