19 resultados para Soil fertility evaluation

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compost, vermicompost and biochar amendments are thought to improve soil quality and plant yield. However, little is known about their long-term impact on crop yield and the environment in tropical agro-ecosystems. In this study we investigated the effect of organic amendments (buffalo manure, compost and verrnicompost) and biochar (applied alone or with vermicompost) on plant yield, soil fertility, soil erosion and water dynamics in a degraded Acrisol in Vietnam. Maize growth and yield, as well as weed growth, were examined for three years in terrestrial mesocosms under natural rainfall. Maize yield and growth showed high inter-annual variability depending on the organic amendment. Vermicompost improved maize growth and yield but its effect was rather small and was only significant when water availability was limited (year 2). This suggests that vermicompost could be a promising substrate for improving the resistance of agrosystems to water stress. When the vermicompost biochar mixture was applied, further growth and yield improvements were recorded in some cases. When applied alone, biochar had a positive influence on maize yield and growth, thus confirming its interest for improving long-term soil productivity. All organic amendments reduced water runoff, soil detachment and NH4+ and NO3- transfer to water. These effects were more significant with vermicompost than with buffalo manure and compost, highlighting that the beneficial influence of vermicompost is not limited to its influence on plant yield. In addition, this study showed for the first time that the combination of vermicompost and biochar may not only improve plant productivity but also reduce the negative impact of agriculture on water quality. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Northern Vietnam, organic fertilization programmes are being tested to restore soil fertility and reduce soil erosion. However, the amendment of organic matter in soil is also associated with the development of the invasive earthworm species Dichogaster bolaui. The objective of this study was to investigate the influence of organic matter amendment quality (compost vs. vermicompost) on D. bolaui. Our study confirmed D. bolaui development in organic patches in the field. However, we also observed that the flat-backed millipede Asiomorpha coarctata proliferated in these organic patches. Native to Asia, this millipede species is also considered as invasive in America. Both D. bolaui and A. coarctata more rapidly colonized compost than vermicompost patches. A laboratory experiment confirmed this trend and showed the limited development of D. bolaui in vermicompost. This is probably because of the decreased palatability of this substrate to soil fauna. In conclusion, any restoration practice that aims to increase the organic stocks in soils degraded by erosion should consider the quality of the organic amendment. In Northern Vietnam, vermicompost may be the preferred substrate for restoring soils while limiting the spread of D. bolaui. (C) 2014 Elsevier Masson SAS. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper shows how multidisciplinary research can help policy makers develop policies for sustainable agricultural water management interventions by supporting a dialogue between government departments that are in charge of different aspects of agricultural development. In the Jaldhaka Basin in West Bengal, India, a stakeholder dialogue helped identify potential water resource impacts and livelihood implications of an agricultural water management rural electrification scenario. Hydrologic modelling demonstrated that the expansion of irrigation is possible with only a localized effect on groundwater levels, but cascading effects such as declining soil fertility and negative impacts from agrochemicals will need to be addressed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance-based liquefaction potential analysis was carried out in the present study to estimate the liquefaction return period for Bangalore, India, through a probabilistic approach. In this approach, the entire range of peak ground acceleration (PGA) and earthquake magnitudes was used in the evaluation of liquefaction return period. The seismic hazard analysis for the study area was done using probabilistic approach to evaluate the peak horizontal acceleration at bed rock level. Based on the results of the multichannel analysis of surface wave, it was found that the study area belonged to site class D. The PGA values for the study area were evaluated for site class D by considering the local site effects. The soil resistance for the study area was characterized using the standard penetration test (SPT) values obtained from 450 boreholes. These SPT data along with the PGA values obtained from the probabilistic seismic hazard analysis were used to evaluate the liquefaction return period for the study area. The contour plot showing the spatial variation of factor of safety against liquefaction and the corrected SPT values required for preventing liquefaction for a return period of 475 years at depths of 3 and 6 m are presented in this paper. The entire process of liquefaction potential evaluation, starting from collection of earthquake data, identifying the seismic sources, evaluation of seismic hazard and the assessment of liquefaction return period were carried out, and the entire analysis was done based on the probabilistic approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Present in situ chemical treatment technologies for mitigation of petroleum hydrocarbon contamination are in the developmental stage or being tested. To devise efficient strategies for restricting the movement of petroleum hydrocarbon (PHC) molecules in the contaminated soil, it is proposed to utilize the sorption–interaction relationships between the petroleum contaminants and the soil substrate. The basic questions addressed in this paper are as follows (i) What are the prominent chemical constituents of the various petroleum fractions that interact with the soil substrate? (ii) What are the functional groups of a soil that interact with the contaminants? (iii) What are the bonding mechanisms possible between the soil functional groups and the PHC contaminants? (iv) What are the consequent changes brought about the soil physical properties on interaction with PHC's? (v) What are the factors influencing the interactions between PHC molecules and clay particles of the soil substrate? (vi) What is the possibility of improving the soil's attenuation ability for PHC's? The development of answers to the basic questions reveal that petroleum hydrocarbons comprise a mixture of nonpolar alkanes and aromatic and polycyclic hydrocarbons, that have limited solubility in water. The bonding mechanism between the nonpolar PHC's and the clay surface is by way of van der Waals attraction. The adsorption of the nonpolar hydrocarbons by the clay surface occurs only when their (i.e., the hydrocarbon molecules) solubility in water is exceeded and the hydrocarbons exist in the micellar form. Dilute solutions of hydrocarbons in water, i.e., concentrations of hydrocarbons at or below the solubility limit, have no effect on the hydraulic conductivity of clay soils. Permeation with pure hydrocarbons invariably influences the clay hydraulic conductivity. To improve the attenuation ability of soils towards PHC's, it is proposed to coat the soil surface with "ultra" heavy organic polymers. Adsorption of organic polymers by the clay surface may change the surface properties of the soil from highly hydrophilic (having affinity for water molecules) to organophilic (having affinity for organic molecules). The organic polymers attached to the clay surface are expected to attenuate the PHC molecules by van der Waals attraction, by hydrogen bonding, and also by adsorption into interlayer space in the case of soils containing swelling clays.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For any construction activity in expansive soils, determination of swelling pressure/heave is an essential step. Though many attempts have been made to develop laboratory procedures by using the laboratory one-dimensional oedometer to determine swelling pressure of expansive soils, they are reported to yield varying results. The main reason for these variations could be heterogeneous moisture distribution of the sample over its thickness. To overcome this variation the experimental procedure should be such that the soil gets fully saturated. Attempts were made to introduce vertical sand drains in addition to the top and bottom drains. In this study five and nine vertical sand drains were introduced to experimentally find out the variations in the swell and swelling pressure. The variations in the moisture content at middle, top, and bottom of the sample in the oedometer test are also reported. It is found that swell-load method is better as compared to zero-swell method. Further, five number of vertical sand drains are found to be sufficient to obtain uniform moisture content distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbiological quality of the treated wastewater is an important parameter for its reuse. The data oil the Fecal Coliform (FC) and Fecal Streptococcus (FS) at different stages of treatment in the Sewage Treatment Plants (STPs) in Delhi watershed is not available, therefore in the present study microbial profiling of STPs was carried out to assess the effluent quality for present and future reuse options. This Study further evaluates the water quality profiles at different stages of treatment for 16 STPs in Delhi city. These STPs are based on conventional Activated Sludge Process (ASP), extended aeration, physical, chemical and biological treatment (BIOFORE), Trickling Filter and Oxidation Pond. The primary effluent quality produced from most of the STPs was suitable for Soil Aquifer Treatment (SAT). Extended Hydraulic Retention Time (HRT) as a result Of low inflow to the STPS Was responsible for high turbidity, COD and BODs removal. Conventional ASP based STPs achieved 1.66 log FC and 1.06 log FS removal. STPs with extended aeration treatment process produced better quality effluent with maximum 4 log order reduction in FC and FS levels. ``Kondli'' and ``Nilothi'' STPs employing ASP, produced better quality secondary effluent as compared to other STPs based oil similar treatment process. Oxidation Pond based STPs showed better FC and FS removals, whereas good physiochemical quality was achieved during the first half of the treatment. Based upon physical, chemical and microbiological removal efficiencies, actual integrated efficiency (IEa) of each STP was determined to evaluate its Suitability for reuse for irrigation purposes. Except Mehrauli'' and ``Oxidation Pond'', effluents from all other STPs require tertiary treatment for further reuse. Possible reuse options, depending Upon the geographical location, proximity of facilities of potential users based oil the beneficial uses, and sub-soil types, etc. for the Delhi city have been investigated, which include artificial groundwater recharge, aquaculture, horticulture and industrial uses Such as floor washing, boiler feed, and cooling towers, etc. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different seismic hazard components pertaining to Bangalore city,namely soil overburden thickness, effective shear-wave velocity, factor of safety against liquefaction potential, peak ground acceleration at the seismic bedrock, site response in terms of amplification factor, and the predominant frequency, has been individually evaluated. The overburden thickness distribution, predominantly in the range of 5-10 m in the city, has been estimated through a sub-surface model from geotechnical bore-log data. The effective shear-wave velocity distribution, established through Multi-channel Analysis of Surface Wave (MASW) survey and subsequent data interpretation through dispersion analysis, exhibits site class D (180-360 m/s), site class C (360-760 m/s), and site class B (760-1500 m/s) in compliance to the National Earthquake Hazard Reduction Program (NEHRP) nomenclature. The peak ground acceleration has been estimated through deterministic approach, based on the maximum credible earthquake of M-W = 5.1 assumed to be nucleating from the closest active seismic source (Mandya-Channapatna-Bangalore Lineament). The 1-D site response factor, computed at each borehole through geotechnical analysis across the study region, is seen to be ranging from around amplification of one to as high as four times. Correspondingly, the predominant frequency estimated from the Fourier spectrum is found to be predominantly in range of 3.5-5.0 Hz. The soil liquefaction hazard assessment has been estimated in terms of factor of safety against liquefaction potential using standard penetration test data and the underlying soil properties that indicates 90% of the study region to be non-liquefiable. The spatial distributions of the different hazard entities are placed on a GIS platform and subsequently, integrated through analytical hierarchal process. The accomplished deterministic hazard map shows high hazard coverage in the western areas. The microzonation, thus, achieved is envisaged as a first-cut assessment of the site specific hazard in laying out a framework for higher order seismic microzonation as well as a useful decision support tool in overall land-use planning, and hazard management. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Equilibrium sediment volume tests are conducted on field soils to classify them based on their degree of expansivity and/or to predict the liquid limit of soils. The present technical paper examines different equilibrium sediment volume tests, critically evaluating each of them. It discusses the settling behavior of fine-grained soils during the soil sediment formation to evolve a rationale for conducting the latest version of equilibrium sediment volume test. Probable limitations of equilibrium sediment volume test and the possible solution to overcome the same have also been indicated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predictions of two popular closed-form models for unsaturated hydraulic conductivity (K) are compared with in situ measurements made in a sandy loam field soil. Whereas the Van Genuchten model estimates were very close to field measured values, the Brooks-Corey model predictions were higher by about one order of magnitude in the wetter range. Estimation of parameters of the Van Genuchten soil moisture characteristic (SMC) equation, however, involves the use of non-linear regression techniques. The Brooks-Corey SMC equation has the advantage of being amenable to application of linear regression techniques for estimation of its parameters from retention data. A conversion technique, whereby known Brooks-Corey model parameters may be converted into Van Genuchten model parameters, is formulated. The proposed conversion algorithm may be used to obtain the parameters of the preferred Van Genuchten model from in situ retention data, without the use of non-linear regression techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The soil moisture characteristic (SMC) forms an important input to mathematical models of water and solute transport in the unsaturated-soil zone. Owing to their simplicity and ease of use, texture-based regression models are commonly used to estimate the SMC from basic soil properties. In this study, the performances of six such regression models were evaluated on three soils. Moisture characteristics generated by the regression models were statistically compared with the characteristics developed independently from laboratory and in-situ retention data of the soil profiles. Results of the statistical performance evaluation, while providing useful information on the errors involved in estimating the SMC, also highlighted the importance of the nature of the data set underlying the regression models. Among the models evaluated, the one possessing an underlying data set of in-situ measurements was found to be the best estimator of the in-situ SMC for all the soils. Considerable errors arose when a textural model based on laboratory data was used to estimate the field retention characteristics of unsaturated soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of spectral analysis of surface wave tests were performed on asphaltic and cement concrete pavements by dropping freely a 6.5kg spherical mass, having a radius of 5.82cm, from a height (h) of 0.51.5m. The maximum wavelength ((max)), up to which the shear wave velocity profile can be detected with the usage of surface wave measurements, increases continuously with an increase in h. As compared to the asphaltic pavement, the values of (max) and (min) become greater for the chosen cement concrete pavement, where (min) refers to the minimum wavelength. With h=0.5m, a good assessment of the top layers of both the present chosen asphaltic and the cement concrete pavements, including soil subgrade, can be made. For a given h, as compared to the selected asphaltic pavement, the first receiver in case of the chosen cement concrete pavement needs to be placed at a greater distance from the source. Inverse analysis has also been performed to characterise the shear wave velocity profile of different layers of the pavements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an approach for target component and system reliability-based design optimisation (RBDO) to evaluate safety for the internal seismic stability of geosynthetic-reinforced soil (GRS) structures is presented. Three modes of failure are considered: tension failure of the bottom-most layer of reinforcement, pullout failure of the topmost layer of reinforcement, and total pullout failure of all reinforcement layers. The analysis is performed by treating backfill properties, geometric and strength properties of reinforcement as random variables. The optimum number of reinforcement layers and optimum pullout length needed to maintain stability against tension failure, pullout failure and total pullout failure for different coefficients of variation of friction angle of the backfill, design strength of the reinforcement and horizontal seismic acceleration coefficients by targeting various system reliability indices are proposed. The results provide guidelines for the total length of reinforcement required, considering the variability of backfill as well as seismic coefficients. One illustrative example is presented to explain the evaluation of reliability for internal stability of reinforced soil structures using the proposed approach. In the second illustration (the stability of five walls), the Kushiro wall subjected to the Kushiro-Oki earthquake, the Seiken wall subjected to the Chiba-ken Toho-Oki earthquake, the Ta Kung wall subjected to the Ji-Ji earthquake, and the Gould and Valencia walls subjected to Northridge earthquake are re-examined.