15 resultados para Social groups

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the issues of spatial distribution, dispersal, and genetic heterogeneity in social groups of the cellular slime molds (CSMs). The CSMs are soil amoebae with an unusual life cycle that consists of alternating solitary and social phases. Because the social phase involves division of labor with what appears to be an extreme form of "altruism", the CSMs raise interesting evolutionary questions regarding the origin and maintenance of sociality. Knowledge of the genetic structure of social groups in the wild is necessary for answering these questions. We confirm that CSMs are widespread in undisturbed forest soil from South India. They are dispersed over long distances via the dung of a variety of large mammals. Consistent with this mode of dispersal, most social groups in the two species examined for detailed study, Dictyostelium giganteum and Dictyostelium purpureum, are multi-clonal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intraspecific competition is a key factor shaping space-use strategies and movement decisions in many species, yet how and when neighbors utilize shared areas while exhibiting active avoidance of one another is largely unknown. Here, we investigated temporal landscape partitioning in a population of wild baboons (Papio cynocephalus). We used global positioning system (GPS) collars to synchronously record the hourly locations of five baboon social groups for similar to 900 days, and we used behavioral, demographic, and life history data to measure factors affecting use of overlap areas. Annual home ranges of neighboring groups overlapped substantially, as predicted (baboons are considered non-territorial), but home ranges overlapped less when space use was assessed over shorter time scales. Moreover, neighboring groups were in close spatial proximity to one another on fewer days than predicted by a null model, suggesting an avoidance-based spacing pattern. At all time scales examined (monthly, biweekly, and weekly), time spent in overlap areas was greater during time periods when groups fed on evenly dispersed, low-quality foods. The percent of fertile females in social groups was negatively correlated with time spent in overlap areas only during weekly time intervals. This suggests that broad temporal changes in ecological resources are a major predictor of how intensively overlap areas are used, and groups modify these ecologically driven spacing patterns at short time scales based on female reproductive status. Together, these findings offer insight into the economics of territoriality by highlighting the dynamics of spacing patterns at differing time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Social Group' of networked nodes, seeking a universe' of segments. Each node has a subset of the universe and access to an expensive resource for downloading data. Nodes can also acquire the universe by exchanging copies of segments among themselves, at low cost, using inter-node links. While exchanges over inter-node links ensure minimum cost, some nodes in the group try to exploit the system. We term such nodes as non-reciprocating nodes' and prohibit such behavior by proposing the give-and-take' criterion, where exchange is allowed if each node has segments unavailable with the other. Under this criterion, we consider the problem of maximizing the number of nodes with the universe at the end of local exchanges. First, we present a randomized algorithm that is shown to be optimal in the asymptotic regime. Then, we present greedy links algorithm, which performs well for most of the scenarios and yields an optimal result when the number of nodes is four. The polygon algorithm is proposed, which yields an optimal result when each of the nodes has a unique segment. After presenting some intuitive algorithms (e.g., greedy incremental algorithm and rarest first algorithm), we compare the performances of all proposed algorithms with the optimal. Copyright (c) 2015 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In social selection the phenotype of an individual depends on its own genotype as well as on the phenotypes, and so genotypes, of other individuals. This makes it impossible to associate an invariant phenotype with a genotype: the social context is crucial. Descriptions of metazoan development, which often is viewed as the acme of cooperative social behaviour, ignore or downplay this fact. The implicit justification for doing so is based on a group-selectionist point of view. Namely, embryos are clones, therefore all cells have the same evolutionary interest, and the visible differences between cells result from a common strategy. The reasoning is flawed, because phenotypic heterogeneity within groups can result from contingent choices made by cells from a flexible repertoire as in multicellular development. What makes that possible is phenotypic plasticity, namely the ability of a genotype to exhibit different phenotypes. However, co-operative social behaviour with division of labour requires that different phenotypes interact appropriately, not that they belong to the same genotype, or have overlapping genetic interests. We sketch a possible route to the evolution of social groups that involves many steps: (a) individuals that happen to be in spatial proximity benefit simply by virtue of their number; (b) traits that are already present act as preadaptations and improve the efficiency of the group; and (c) new adaptations evolve under selection in the social context-that is, via interactions between individuals-and further strengthen group behaviour. The Dictyostelid or cellular slime mould amoebae (CSMs) become multicellular in an unusual way, by the aggregation of free-living cells. In nature the resulting group can be genetically homogeneous (clonal) or heterogeneous (polyclonal); in either case its development, which displays strong cooperation between cells (to the extent of so-called altruism) is not affected. This makes the CSMs exemplars for the study of social behaviour.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Asian elephants in the wild live in complex social societies; in captivity, however, management often occurs in solitary conditions, especially at the temples and private places of India. To investigate the effect of social isolation, this study assessed the social group sizes and the presence of stereotypies among 140 captive Asian elephants managed in 3 captive systems (private, temple, and forest department) in Tamil Nadu, India, between 2003 and 2005. The majority of the facilities in the private (82%) and temple (95%) systems held a single elephant without opportunity for social interaction. The forest department managed the elephants in significantly larger groups than the private and temple systems. Among the 3 systems, the proportion of elephants with stereotypies was the highest in temple (49%) followed by private system (26%) and the forest department facility (6%); this correlates with the social isolation trend observed in the 3 systems and suggests a possible link between social isolation and abnormal elephant behavior separate from other environmental factors. The results of this study indicate it would be of greater benefit to elephant well being to keep the patchily distributed solitary temple and private elephants who are socially compatible and free from contagious diseases in small social groups at ocommon elephant houseso for socialization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the trishanku (triA(-)) mutant of the social amoeba Dictyostelium discoideum, aggregates are smaller than usual and the spore mass is located mid-way up the stalk, not at the apex. We have monitored aggregate territory size, spore allocation and fruiting body morphology in chimaeric groups of (quasi-wild-type) Ax2 and triA(-) cells. Developmental canalisation breaks down in chimaeras and leads to an increase in phenotypic variation. A minority of triA(-) cells causes largely Ax2 aggregation streams to break up; the effect is not due to the counting factor. Most chimaeric fruiting bodies resemble those of Ax2 or triA(-). Others are double-deckers with a single stalk and two spore masses, one each at the terminus and midway along the stalk. The relative number of spores belonging to the two genotypes depends both on the mixing ratio and on the fruiting body morphology. In double-deckers formed from 1:1 chimaeras, the upper spore mass has more Ax2 spores, and the lower spore mass more triA(-) spores, than expected. Thus, the traits under study depend partly on the cells' own genotype and partly on the phenotypes, and so genotypes, of other cells: they are both autonomous and non-autonomous. These findings strengthen the parallels between multicellular development and behaviour in social groups. Besides that, they reinforce the point that a trait can be associated with a genotype only in a specified context.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The stable co-existence of individuals of different genotypes and reproductive division of labour within heterogeneous groups are issues of fundamental interest from the viewpoint of evolution. Cellular slime moulds are convenient organisms in which to address both issues. Strains of a species co-occur, as do different species; social groups are often genetically heterogeneous. Intra- and interspecies 1:1 mixes of wild isolates of Dictyostelium giganteum and D.purpureum form chimaeric aggregates, following which they segregate to varying extents. Intraspecies aggregates develop in concert and give rise to chimaeric fruiting bodies that usually contain more spores (reproductives) of one component than the other. Reproductive skew and variance in the proportion of reproductives are positively correlated. Interspecies aggregates exhibit almost complete sorting; most spores in a fruiting body come from a single species. Between strains, somatic compatibility correlates weakly with sexual compatibility. It is highest within clones, lower between strains of a species and lowest between strains of different species. Trade-offs among fitness-related traits (between compatible strains), sorting out (between incompatible strains) and avoidance (between species) appear to lie behind coexistence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we explore the conjoint evolution of dispersal and social behaviour. The model investigated is of a population distributed over a number of sites each with a carrying capacity of two adults and an episode of dispersal in the juvenile stage. The fertilities are governed by whether an individual and its neighbour are selfish or co-operative. It is shown that the best dispersal strategy for the co-operative genotype always involves lower levels of dispersal; and further that ecological conditions favouring low levels of dispersal increase the selective advantage of a co-operative genotype. Given this positive feedback, we suggest that in any taxon viscosity and co-operativity will tend to be correlated and bimodally distributed. Hence we predict the existence of two kinds of animal societies; viscous and co-operative (e.g. quasi-social wasps such as Mischocyttarus), and non-viscous and selfish (e.g. communal sphecid wasps such as Cerceris), and relatively few social groups with intermediate levels of co-operativity and viscosity. We also suggest that when one of the two sexes disperses, it will be the sex with lower potential for co-operative behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two dhole (Cuon alpinus) packs were monitored in Mudumalai Sanctuary, southern India, during 1989-93 to look at population dynamics, movement pattern, and foraging strategy and their inter-relationship with the maintenance of social groups. Pack size fluctuated substantially (4-18 and 4-25 in the two packs) owing to dispersal and demographic factors such as females not breeding in a given year. Both packs killed a much higher proportion of chital (Axis axis) and sambar (Cervus unicolor) fawns (< one year old) than their availability in the population. There was no correlation between pack size and body weight of prey killed, while per capita consumption of meat declined with increasing pack size. Home-range area (83.3 km(2) and 54.2 km(2) for the two packs) was not correlated with pack size. Pack movement from one resource patch (consisting of resting sites and aggregations of prey species) to another was not random or based on factors such as inter-patch distance or relative prey densities. There was no difference in mean residence time of the pack across the four resource patches; the pack moved across these in a sequential manner in one direction. We conclude that dholes live in groups not because of any advantages accruing from enhanced group sizes through increased per capita yield of food, but as a consequence of the dispersion of resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bird species are hypothesized to join mixed-species flocks (flocks hereon) either for direct foraging or anti-predation-related benefits. In this study, conducted in a tropical evergreen forest in the Western Ghats of India, we used intra-flock association patterns to generate a community-wide assessment of flocking benefits for different species. We assumed that individuals needed to be physically proximate to particular heterospecific individuals within flocks to obtain any direct foraging benefit (flushed prey, kleptoparasitism, copying foraging locations). Alternatively, for anti-predation benefits, physical proximity to particular heterospecifics is not required, i.e. just being in the flock vicinity can suffice. Therefore, we used choice of locations within flocks to infer whether individual species are obtaining direct foraging or anti-predation benefits. A small subset of the bird community (5/29 species), composed of all members of the sallying guild, showed non-random physical proximity to heterospecifics within flocks. All preferred associates were from non-sallying guilds, suggesting that the sallying species were likely obtaining direct foraging benefits either in the form of flushed or kleptoparasitized prey. The majority of the species (24/29) chose locations randomly with respect to heterospecifics within flocks and, thus, were likely obtaining antipredation benefits. In summary, our study indicates that direct foraging benefits are important for only a small proportion of species in flocks and that predation is likely to be the main driver of flocking for most participants. Our findings apart, our study provides methodological advances that might be useful in understanding asymmetric interactions in social groups of single and multiple species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In both single- and mixed-species social groups, certain participants are known to play important roles in providing benefits. Identifying these participants is critical for understanding group dynamics, but is often difficult with large roving social groups in the wild. Here, we develop a new approach to characterize roles in social groups and apply it to mixed-species bird flocks (flocks hereafter) in an Indian tropical evergreen forest. Two types of species, namely intraspecifically gregarious and sallying species, are thought to play important roles in flocks because studies have shown they attract other flock participants. However, it is unclear why these types are attractive and whether they are essential for flock formation. We address these questions by focusing on the composition of the subset of flocks containing only two species each. In two-species flocks, it is reasonable to assume that at least one species obtains some kind of benefit. Therefore, only those species combinations that result in benefit to at least one species should occur as two-species flocks. Using data from 540 flocks overall, of which 158 were two-species flocks, we find that intraspecifically gregarious species are disproportionately represented in two-species flocks and always lead flocks when present, and that flocks containing them are joined significantly more by other species. Our results suggest that intraspecifically gregarious species are likely to be the primary benefit providers in flocks and are important for tropical flock formation. Our study also provides a new approach to understanding importance in other mixed-species and single-species social groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB- cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poison gland and Dufour's gland are the two glands associated with the sting apparatus in female Apocrita (Hymenoptera). While the poison gland usually functions as an integral part of the venom delivery system, the Dufour's gland has been found to differ in its function in various hymenopteran groups. Like all exocrine glands, the function of the Dufour's gland is to secrete chemicals, but the nature and function of the secretions varies in different taxa. Functions of the Dufour's gland secretions range from serving as a component of material used in nest building, larval food, and pheromones involved in communicative functions that are important for both solitary and social species. This review summarizes the different functions reported for the Dufour's gland in hymenopterans, illustrating how the Dufour's gland secretions can be adapted to give rise to various functions in response to different challenges posed by the ways of life followed by different taxa. Aspects of development, structure, chemistry and the evolution of different functions are also touched upon briefly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ropalidia marginata is a primitively eusocial wasp widely distributed in peninsular India. Although solitary females found a small proportion of nests, the vast majority of new nests are founded by small groups of females. In suchmultiple foundress nests, a single dominant female functions as the queen and lays eggs, while the rest function as sterile workers and care for the queen's brood. Previous attempts to understand the evolution of social behaviour and altruism in this species have employed inclusive fitness theory (kin selection) as a guiding framework. Although inclusive fitness theory is quite successful in explaining the high propensity of the wasps to found nests in groups, several features of their social organization suggest that forces other than kin selection may also have played a significant role in the evolution of this species. These features include lowering of genetic relatedness owing to polyandry and serial polygyny, nest foundation by unrelated individuals, acceptance of young non-nest-mates, a combination of well-developed nest-mate recognition and lack of intra-colony kin recognition, a combination of meek and docile queens and a decentralized self-organized work force, long reproductive queues with cryptic heir designates and conflict-free queen succession, all resulting in extreme intra-colony cooperation and inter-colony conflict.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the optimal control problem of maximizing the spread of an information epidemic on a social network. Information propagation is modeled as a susceptible-infected (SI) process, and the campaign budget is fixed. Direct recruitment and word-of-mouth incentives are the two strategies to accelerate information spreading (controls). We allow for multiple controls depending on the degree of the nodes/individuals. The solution optimally allocates the scarce resource over the campaign duration and the degree class groups. We study the impact of the degree distribution of the network on the controls and present results for Erdos-Renyi and scale-free networks. Results show that more resource is allocated to high-degree nodes in the case of scale-free networks, but medium-degree nodes in the case of Erdos-Renyi networks. We study the effects of various model parameters on the optimal strategy and quantify the improvement offered by the optimal strategy over the static and bang-bang control strategies. The effect of the time-varying spreading rate on the controls is explored as the interest level of the population in the subject of the campaign may change over time. We show the existence of a solution to the formulated optimal control problem, which has nonlinear isoperimetric constraints, using novel techniques that is general and can be used in other similar optimal control problems. This work may be of interest to political, social awareness, or crowdfunding campaigners and product marketing managers, and with some modifications may be used for mitigating biological epidemics.