4 resultados para Snow.

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in seasonal snow covered area in the Hindu Kush-Himalayan (HKH) region have been examined using Moderate – resolution Imaging Spectroradiometer (MODIS) 8-day standard snow products. The average snow covered area of the HKH region based on satellite data from 2000 to 2010 is 0.76 million km2 which is 18.23% of the total geographical area of the region. The linear trend in annual snow cover from 2000 to 2010 is −1.25±1.13%. This is in consistent with earlier reported decline of the decade from 1990 to 2001. A similar trend for western, central and eastern HKH region is 8.55±1.70%, +1.66% ± 2.26% and 0.82±2.50%, respectively. The snow covered area in spring for HKH region indicates a declining trend (−1.04±0.97%). The amount of annual snowfall is correlated with annual seasonal snow cover for the western Himalaya, indicating that changes in snow cover are primarily due to interannual variations in circulation patterns. Snow cover trends over a decade were also found to vary across seasonally and the region. Snow cover trends for western HKH are positive for all seasons. In central HKH the trend is positive (+15.53±5.69%) in autumn and negative (−03.68±3.01) in winter. In eastern HKH the trend is positive in summer (+3.35±1.62%) and autumn (+7.74±5.84%). The eastern and western region of HKH has an increasing trend of 10% to 12%, while the central region has a declining trend of 12% to 14% in the decade between 2000 and 2010. Snow cover depletion curve plotted for the hydrological year 2000–2001 reveal peaks in the month of February with subsidiary peaks observed in November and December in all three regions of the HKH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All major rivers in Bhutan depend on snowmelt for discharge. Therefore, changes in snow cover due to climate change can influence distribution and availability of water. However, information about distribution of seasonal snow cover in Bhutan is not available. The MODIS snow product was used to study snow cover status and trends in Bhutan. Average snow cover area (SCA) of Bhutan estimated for the period 2002 to 2010 was 9030 sq. km, about 25.5% of the total land area. SCA trend of Bhutan for the period 2002-2010 was found to decrease (-3.27 +/- 1.28%). The average SCA for winter was 14,485 sq. km (37.7%), for spring 7411 sq. km (19.3%), for summer 4326 sq. km (11.2%), and for autumn 7788 sq. km (20.2%), mostly distributed in the elevation range 2500-6000 m amsl. Interannual and seasonal SCA trend both showed a decline, although it was not statistically significant for all sub-basins. Pho Chu sub-basin with 19.5% of the total average SCA had the highest average SCA. The rate of increase of SCA for every 100 m elevation was the highest (2.5%) in the Pa Chu sub-basin. The coefficient of variance of 1.27 indicates high variability of SCA in winter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential merit of laser-induced breakdown spectroscopy (LIBS) has been demonstrated for detection and quantification of trace pollutants trapped in snow/ice samples. In this technique, a high-power pulsed laser beam from Nd:YAG Laser (Model no. Surelite III-10, Continuum, Santa Clara, CA, USA) is focused on the surface of the target to generate plasma. The characteristic emissions from laser-generated plasma are collected and recorded by a fiber-coupled LIBS 2000+ (Ocean Optics, Santa Clara, CA, USA) spectrometer. The fingerprint of the constituents present in the sample is obtained by analyzing the spectral lines by using OOI LIBS software. Reliable detection of several elements like Zn, Al, Mg, Fe, Ca, C, N, H, and O in snow/ice samples collected from different locations (elevation) of Manali and several snow samples collected from the Greater Himalayan region (from a cold lab in Manali, India) in different months has been demonstrated. The calibration curve approach has been adopted for the quantitative analysis of these elements like Zn, Al, Fe, and Mg. Our results clearly demonstrate that the level of contamination is higher in those samples that were collected in the month of January in comparison to those collected in February and March.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Himalayas are presently holding the largest ice masses outside the polar regions and thus (temporarily) store important freshwater resources. In contrast to the contemplation of glaciers, the role of runoff from snow cover has received comparably little attention in the past, although (i) its contribution is thought to be at least equally or even more important than that of ice melt in many Himalayan catchments and (ii) climate change is expected to have widespread and significant consequences on snowmelt runoff. Here, we show that change assessment of snowmelt runoff and its timing is not as straightforward as often postulated, mainly as larger partial pressure of H2O, CO2, CH4, and other greenhouse gases might increase net long-wave input for snowmelt quite significantly in a future atmosphere. In addition, changes in the short-wave energy balance such as the pollution of the snow cover through black carbon or the sensible or latent heat contribution to snowmelt are likely to alter future snowmelt and runoff characteristics as well. For the assessment of snow cover extent and depletion, but also for its monitoring over the extremely large areas of the Himalayas, remote sensing has been used in the past and is likely to become even more important in the future. However, for the calibration and validation of remotely-sensed data, and even-more so in light of possible changes in snow-cover energy balance, we strongly call for more in-situ measurements across the Himalayas, in particular for daily data on new snow and snow cover water equivalent, or the respective energy balance components. Moreover, data should be made accessible to the scientific community, so that the latter can more accurately estimate climate change impacts on Himalayan snow cover and possible consequences thereof on runoff. (C) 2013 Elsevier B.V. All rights reserved.