2 resultados para Slusser, Jean Paul, 1886-
em Indian Institute of Science - Bangalore - Índia
Resumo:
Sepsis is the leading cause of death in intensive care units and results from a deleterious systemic host response to infection. Although initially perceived as potentially deleterious, catalytic antibodies have been proposed to participate in removal of metabolic wastes and protection against infection. Here we show that the presence in plasma of IgG endowed with serine protease-like hydrolytic activity strongly correlates with survival from sepsis. Variances of catalytic rates of IgG were greater in the case of patients with severe sepsis than healthy donors (P < 0.001), indicating that sepsis is associated with alterations in plasma levels of hydrolytic IgG. The catalytic rates of IgG from patients who survived were significantly greater than those of IgG from deceased patients (P < 0.05). The cumulative rate of survival was higher among patients exhibiting high rates of IgG-mediated hydrolysis as compared with patients with low hydrolytic rates (P < 0.05). An inverse correlation was also observed between the markers of severity of disseminated intravascular coagulation and rates of hydrolysis of patients' IgG. Furthermore, IgG from three surviving patients hydrolyzed factor VIII, one of which also hydrolyzed factor IX, suggesting that, in some patients, catalytic IgG may participate in the control of disseminated microvascular thrombosis. Our observations provide the first evidence that hydrolytic antibodies might play a role in recovery from a disease.
Resumo:
The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of similar to 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of similar to 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.