163 resultados para Slip

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present results on water flow past randomly textured hydrophobic surfaces with relatively large surface features of the order of 50 µm. Direct shear stress measurements are made on these surfaces in a channel configuration. The measurements indicate that the flow rates required to maintain a shear stress value vary substantially with water immersion time. At small times after filling the channel with water, the flow rates are up to 30% higher compared with the reference hydrophilic surface. With time, the flow rate gradually decreases and in a few hours reaches a value that is nearly the same as the hydrophilic case. Calculations of the effective slip lengths indicate that it varies from about 50 µm at small times to nearly zero or “no slip” after a few hours. Large effective slip lengths on such hydrophobic surfaces are known to be caused by trapped air pockets in the crevices of the surface. In order to understand the time dependent effective slip length, direct visualization of trapped air pockets is made in stationary water using the principle of total internal reflection of light at the water-air interface of the air pockets. These visualizations indicate that the number of bright spots corresponding to the air pockets decreases with time. This type of gradual disappearance of the trapped air pockets is possibly the reason for the decrease in effective slip length with time in the flow experiments. From the practical point of usage of such surfaces to reduce pressure drop, say, in microchannels, this time scale of the order of 1 h for the reduction in slip length would be very crucial. It would ultimately decide the time over which the surface can usefully provide pressure drop reductions. ©2009 American Institute of Physics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Closed-form solutions are presented for blood flow in the microcirculation by taking into account the influence of slip velocity at the membrane surface. In this study, the convective inertia force is neglected in comparison with that of blood viscosity on the basis of the smallness of the Reynolds number of the flow in microcirculation. The permeability property of the blood vessel is based on the well known Starling's hypothesis [11]. The effects of slip coefficient on the velocity and pressure fields are clearly depicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy has been employed to observe the slip lines in deformed Al-2% Ge alloy samples. Slip lines have been observed in the as-quenched, partially-aged, fully-aged and over-aged states. The lines tend to traverse fairly straight paths in the case of quenched and partially-aged conditions. Fully-aged samples also reveal such straight running lines when tested at low-temperatures. However, the density of the lines generally decreases as the peak-aged state is approached. These results are in agreement with the idea that thermally activated shearing of the precipitates is occurring in the alloy aged up to peak-hardness. The irregular lines for the over-aged specimens support the view that the moving dislocations by-pass the precipitates during deformation. The influence of test-temperature on the appearance of slip traces has been briefly examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find sandwiched metal dimers CB5H6M–MCB5H6 (M = Si, Ge, Sn) which are minima in the potential energy surface with a characteristic M–M single bond. The NBO analysis and the M–M distances (Å) (2.3, 2.44 and 2.81 for M = Si, Ge, Sn) indicate substantial M–M bonding. Formal generation of CB5H6M–MCB5H6 has been studied theoretically. Consecutive substitution of two boron atoms in B7H−27 by M (Si, Ge, Sn) and carbon, respectively followed by dehydrogenation may lead to our desired CB5H6M–MCB5H6. We find that the slip distorted geometry is preferred for MCB5H7 and its dehydrogenated dimer CB5H6M–MCB5H6. The slip-distortion of M–M bond in CB5H6M–MCB5H6 is more than the slip distortion of M–H bond in MCB5H7. Molecular orbital analysis has been done to understand the slip distortion. Larger M–M bending (CB5H6M–MCB5H6) in comparison with M–H bending (MCB5H7) is suspected to be encouraged by stabilization of one of the M–M π bonding MO’s. Preference of M to occupy the apex of pentagonal skeleton of MCB5H7 over its icosahedral analogue MCB10H11 has been observed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stick-slip is usually observed in driven dissipative threshold systems. In these set of lectures, we discuss, some generic and system specific features of stickslip systems by considering a few examples wherein there has been some progress in understanding the associated dynamics. In most stick slip systems, both at low and high drive rates, the system slides smoothly, but within a window of drive rates, the motion becomes intermittent; the system alternately “sticks” till the stress builds up to a threshold value, and then “slips” when the stress is rapidly released. This intermittent motion can be traced to the existence of an unstable branch separating the two resistive branches in the force-drive-rate relation. While the two resistive branches are experimentally measurable, the unstable branch is usually not measurable and is only inferred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A slip line field is proposed for symmetrical single‐cavity closed‐die forging by rough dies. A compatible velocity field is shown to exist. Experiments were conducted using lead workpiece and rough dies. Experimentally observed flow and load were used to validate the proposed slip line field. The slip line field was used to simulate the process in the computer with the objective of studying the influence of flash geometry on cavity filling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decade ago, Budakian and Putterman [Phys. Rev. Lett. 85, 1000 (2000)] ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the viscoelastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The operation of a stand-alone, as opposed to grid connected generation system, using a slip-ring induction machine as the electrical generator, is considered. In contrast to an alternator, a slip-ring induction machine can run at variable speed and still deliver constant frequency power to loads. This feature enables optimization of the system when the prime mover is inherently variable speed in nature eg. wind turbines, as well as diesel driven systems, where there is scope for economizing on fuel consumption. Experimental results from a system driven by a 44 bhp diesel engine are presented. Operation at subsynchronous as well as super-synchronous speeds is examined. The measurement facilitates the understanding of the system as well as its design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of forging design is to ensure cavity filling with minimum material wastage, minimum die load and minimum deformation energy. Given the desired shape of the component and the material to be forged, this goal is achieved by optimising the initial volume of the billet, the geometrical parameters of the die and the process parameters. It is general industrial practise to fix the initial billet volume and the die parameters using empirical relationships derived from practical experience. In this paper a basis for optimising some of the parameters for simple closed-die forging is proposed. Slip-line field solutions are used to predict the flow, the load and the energy in a simple two-dimensional closed-die forging operation. The influence of the design parameters; flash-land width, excess initial workpiece area and forged cross-sectional size; on complete cavity filling and efficient cavity filling are investigated. Using the latter as necessary requirements for forging, the levels of permissable design parameters are determined, the variation of these levels with the size of the cross-section then being examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wheeled mobile robot (WMR) can move on uneven terrains without slip if the wheels are allowed to tilt laterally. This paper deals with the analysis, design and experimentations with a WMR where the wheels can tilt laterally. The wheels of such a WMR must be equipped with two degrees of freedom suspension mechanism. A prototype three-wheeled mobile robot is fabricated with a two degree-of-freedom suspension mechanism. Simulations show that the three-wheeled mobile robot can traverse uneven terrains with very little slip and experiments with the prototype on a representative uneven terrain confirm that the slip is significantly reduced.