120 resultados para Sliding interfaces
em Indian Institute of Science - Bangalore - Índia
Resumo:
Experimental evidence suggests that high strain rates, stresses, strains and temperatures are experienced near sliding interfaces. The associated microstructural changes are due to several dynamic an interacting phenomena. 3D non-equilibrium molecular dynamics (MD) simulations of sliding were conducted with the aim of understanding the dynamic processes taking place in crystalline tribopairs, with a focus on plastic deformation and microstructural evolution. Embedded atom potentials were employed for simulating sliding of an Fe-Cu tribopair. Sliding velocity, crystal orientation and presence of lattice defects were some of the variables in these simulations. Extensive plastic deformation involving dislocation and twin activity, dynamic recrystallization, amorphization and/or nanocrystallization, mechanical mixing and material transfer were observed. Mechanical mixing in the vicinity of the sliding interface was observed even in the Fe-Cu system, which would cluster under equilibrium conditions, hinting at the ballistic nature of the process. Flow localization was observed at high velocities implying the possible role of adiabatic heating. The presence of preexisting defects (such as dislocations and interfaces) played a pivotal role in determining friction and microstructural evolution. The study also shed light on the relationship between adhesion and plastic deformation, and friction. Comparisons with experiments suggest that such simulations can indeed provide valuable insights that are difficult to obtain from experiments.
Resumo:
This brief introductory article summarizes key findings from experiments and from computer simulations concerning the dramatic changes that commonly occur adjacent to sliding interfaces. We conclude that a wide range of observed features depends on a few basic processes (plastic deformation, interactions with the environment (including the counterface) and mechanical mixing) and that sliding leads to flow patterns similar to those expected in fluid flow.
Resumo:
Electromigration (EM)-induced interfacial sliding between a metal film and Si substrate occurs when (i) only few grains exist across the width of the film and (ii) diffusivity through the interfacial region is significantly greater than diffusivity through the film. Here, the effect of the substrate surface layer on the kinetics of EM-induced interfacial sliding is assessed using Si substrates coated with various thin film interlayers. The kinetics of interfacial sliding, and therefore the EM-driven mass flow rate, strongly depends on the type of the interlayer (and hence the substrate surface composition), such that strongly bonded interfaces with slower interfacial diffusivity produce slower sliding.
Resumo:
Direct observation of events taking place at the contacting interfaces is important to understand many tribological phenomena. Transmission electron microscope (TEM) has the ability to look through materials at very high magnifications. Most of the TEM observations are done long after the deforming loads and stresses have been relaxed and the material state is further disturbed during the specimen preparation. We have developed a specimen holder in which two electron transparent surfaces can be brought in contact and moved relative to each other in JEOL 2000FX microscope. This holder enables visualization of not only the contacting surfaces at nanoscale but also the subsurface deformation resulting from the contact interaction. Sliding experimentS have been carried out mimicking a single asperity sliding contact. A sharp tungsten probe is moved laterally against a tip mounted on a cantilever. Magnitude of the contact instability, when the contact is broken is found to be dependent on the local geometry of the contact.(C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Aluminium-silicon alloy, an important material used for the construction of internal combustion engines, exhibit pressure induced distinct regimes of wear and friction; ultra-mild and mild. In this work the alloy is slid lubricated against a spherical steel pin at contact pressures characteristic of the two test regimes, at a very low sliding velocity. In both cases, the friction is controlled at the initial stages of sliding by the abrasion of the steel pin by the protruding silicon particles of the disc. The generation of nascent steel chips helps to breakdown the additive in the oil by a cationic exchange that yields chemical products of benefits to the tribology. The friction is initially controlled by abrasion, but the chemical products gain increasing importance in controlling friction with sliding time. After long times, depending on contact pressure, the chemical products determine sliding friction exclusively. In this paper, a host of mechanical and spectroscopic techniques are used to identify and characterize mechanical damage and chemical changes. Although the basic dissipation mechanisms are the same in the two regimes, the matrix remains practically unworn in the low-pressure ultra-mild wear regime. In the higher pressure regime at long sliding times a small but finite wear rate prevails. Incipient plasticity in the subsurface controls the mechanism of wear.
Resumo:
The mode I and mode II fracture toughness and the critical strain energy release rate for different concrete-concrete jointed interfaces are experimentally determined using the Digital Image Correlation technique. Concrete beams having different compressive strength materials on either side of a centrally placed vertical interface are prepared and tested under three-point bending in a closed loop servo-controlled testing machine under crack mouth opening displacement control. Digital images are captured before loading (undeformed state) and at different instances of loading. These images are analyzed using correlation techniques to compute the surface displacements, strain components, crack opening and sliding displacements, load-point displacement, crack length and crack tip location. It is seen that the CMOD and vertical load-point displacement computed using DIC analysis matches well with those measured experimentally.
Resumo:
In lubricated sliding contacts, components wear out and the lubricating oil ages with time. The present work explores the interactive influence between lubricant aging and component wear. The flat face of a steel pin is slid against a rotating steel disk under near isothermal conditions while the contact is immersed in a reservoir of lubricant (hexadecane). The chemical changes in the oil with time are measured by vibrational spectroscopy and gas chromatography. The corresponding chemistry of the pin surface is recorded using X-ray photoelectron spectroscopy while the morphology of the worn pins; surface and subsurface, are observed using a combination of focused ion beam milling and scanning electron 5 microscopy. When compared to thermal auto-oxidation of the lubricant alone, steel on steel friction and wear are found to accentuate the decomposition of oil and to reduce the beneficial impact of antioxidants. The catalytic action of nascent iron, an outcome of pin wear and disk wear, is shown to contribute to this detrimental effect. Over long periods of sliding, the decomposition products of lubricant aging on their own, as well as in conjunction with their products of reaction with iron, generate a thick tribofilm that is highly protective in terms of friction and wear.
Resumo:
Determination of shear strength of brick-mortar bed joint is critical to overcome the sliding-shear or joint-shear failure in masonry. In the recent past, researchers have attempted to enhance the shear strength and deformation capacity of brick-mortar bed joints by gluing fiber-reinforced polymer (FRP) composite across the bed joint. FRP composites offer several advantages like high strength-to-weight ratio, and ease of application in terms of labor, time, and reduced curing period. Furthermore, FRP composites are desirable for strengthening old masonry buildings having heritage value because of its minimal interference with the existing architecture. A majority of earlier studies on shear strengthening of masonry available in the literature adopted masonry having the ratio of modulus of elasticity of masonry unit (Emu) to modulus of elasticity of mortar (Em) greater than one. Information related to shear behavior of FRP glued masonry composed of masonry units having Young's modulus lower than mortar is limited. Hence the present study is focused on characterizing the interfacial behavior of brick-mortar bed joint of masonry assemblages composed of solid burnt clay bricks and cement-sand mortar (E-mu/E-m ratio less than one), strengthened with FRP composites. Masonry triplets and prisms with bed joint inclined to loading axis (0 degrees, 30 degrees, 45 degrees, 60 degrees and 90 degrees) are employed in this study. Glass and carbon FRP composites composed of bidirectional FRP fabric with equal density in both directions are used for strengthening masonry. Masonry triplets are glued with glass and carbon FRP composites in two configurations: (1) both faces of the triplet specimens are fully glued with GFRP composites; and (2) both faces of the triplet specimens are glued with GFRP and CFRP composites in strip form. The performance of masonry assemblages strengthened with FRP composites is assessed in terms of gain in shear strength, shear displacement, and postpeak behavior for various configurations and types of FRP composites considered. A semianalytical model is proposed for the prediction of shear strength of masonry bed joints glued with FRP composites. A composite failure envelope consisting of a Coulomb friction model and a compression cap is obtained for unreinforced masonry and GFRP-strengthened masonry based on the test results of masonry triplets and masonry prisms with bed joints having various inclinations to the loading (C) 2015 American Society of Civil Engineers.
Resumo:
In contrast to metallic alloys, the mechanical characteristics of superplastic ceramics are very sensitive to minor changes in levels of trace impurities. In the present study, the mechanical behavior of a 2 mol% yttria stabilized tetragonal zirconia was studied in tension and compression in two batches of material, with small variations in levels of trace impurities, to examine the influence of stress axis and impurity content on the deformation behavior. The mechanical properties of the material were characterized in terms of the expression: (epsilon)over dot proportional to sigma(n) where (epsilon)over dot is the strain rate, sigma is the stress and n is termed the stress exponent. The mechanical behavior of the ceramic was identical in tension and compression, for a material with a given level of impurity. The high purity specimens exhibited a transition from a stress exponent of similar to 3 to similar to 2 with an increase in stress, whereas the low purity material displayed only n similar to 2 behavior over the entire stress range studied. Detailed high resolution and analytical electron microscopy studies revealed that there was no amorphous phase at interfaces in both batches of material; however, segregation of Al at interfaces was detected only in the low purity material. The observed transition in stress exponents can be rationalized in terms of two sequential mechanisms: grain boundary sliding with n similar to 2 and interface reaction controlled grain boundary sliding with n similar to 3. The transition from n similar to 3 to similar to 2 occurred at lower stresses with an increase in the grain size and a decrease in the purity level.
Resumo:
Friction can influence the quality of the finished product to a large extent in certain manufacturing processes. Sheet metal forming is a particular case, where the friction between the hard-die and the relatively soft work-piece can be extremely important. Under such conditions, topography of the harder surface can influence the resistance to traction at the interface. This paper discusses about the correlation between certain features of the surface; topography and coefficient of friction based on experiments involving sliding of a few soft metal pins against a harder material. A brief description of the experimental procedure and the analysis are presented. A hybrid parameter which encapsulates both the amplitude features as well as the relative packing of peaks is shown to correlate well with the coefficient of friction.
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
The subsurface deformation during dry sliding of Al-Si alloys is studied by fragmentation of silicon particles. The size of the fragmented particles does not vary with load. The depth of deformation is found to increase with increase in normal load. This experimental observation agrees with load-deformation depth characteristics obtained by a slip line field model.
Resumo:
A two-state Ising model has been applied to the two-dimensional condensation of tymine at the mercury-water interface. The model predicts a quadratic dependence of the transition potential on temperature and on the logarithm of the adsorbate concentration. Both predictions have been confirmed experimentally.
Resumo:
Controversy exists in the published literature as to the effect of silicon content and pressure on the dry sliding wear of Al---Si alloys. The present paper attempts to clarify the question by reporting a statistical analysis of data obtained from factorially designed experiments conducted on a pinon-disc machine in the pressure range 0.105–1.733 MPa and speed range 0.19–0.94 m s−1. Under these conditions it was found that, in the range 4–24 wt.% Si, wear of binary unmodified alloys does not significantly differ between the alloys. However, it is significantly less than that corresponding to an alloy containing no silicon. The effect of pressure on wear rate was found to be linear and monotonie and, over the narrow range of speeds used, the wear rate was found to be unaffected by speed. The coefficient of friction was found to be insensitive to variations in silicon content, pressure and speed.
Resumo:
In the present investigation, the wear behaviour of a creep-resistant AE42 magnesium alloy and its composites reinforced with Saffil short fibres and SiC particles in various combinations is examined in the longitudinal direction i.e., the plane containing random fibre orientation is perpendicular to the steel counter-face. Wear tests are conducted on a pin-on-disc set-up under dry sliding condition having a constant sliding velocity of 0.837 m/s for a constant sliding distance of 2.5 km in the load range of 10-40 N. It is observed that the wear rate increases with increase in load for the alloy and the composites, as expected. Wear rate of the composites is lower than the alloy and the hybrid composites exhibit a lower wear rate than the Saffil short fibres reinforced composite at all the loads. Therefore, the partial replacement of Saffil short fibres by an equal volume fraction of SiC particles not only reduces the cost but also improves the wear resistance of the composite. Microstructural investigation of the surface and subsurface of the worn pin and wear debris is carried out to explain the observed results and to understand the wear mechanisms. It is concluded that the presence of SiC particles in the hybrid composites improves the wear resistance because these particles remain intact and retain their load bearing capacity even at the highest load employed, they promote the formation of iron-rich transfer layer and they also delay the fracture of Saffil short fibres to higher loads. Under the experimental conditions used in the present investigation, the dominant wear mechanism is found to be abrasion for the AE42 alloy and its composites. It is accompanied by severe plastic deformation of surface layers in case of alloy and by the fracture of Saffil short fibres as well as the formation of iron-rich transfer layer in case of composites.