93 resultados para Skin Permeability Coefficients
em Indian Institute of Science - Bangalore - Índia
Resumo:
The unsteady magnetohydrodynamic viscous flow and heat transfer of Newtonian fluids induced by an impulsively stretched plane surface in two lateral directions are studied by using an analytic technique, namely, the homotopy method. The analytic series solution presented here is highly accurate and uniformly valid for all time in the entire region. The effects of the stretching ratio and the magnetic field on the surface shear stresses and heat transfer are studied. The surface shear stresses in x- and y-directions and the surface heat transfer are enchanced by increasing stretching ratio for a fixed value of the magnetic parameter. For a fixed stretching ratio, the surface shear stresses increase with the magnetic parameter, but the heat transfer decreases. The Nusselt number takes longer time to reach the steady state than the skin friction coefficients. There is a smooth transition from the initial unsteady state to the steady state.
Resumo:
The unsteady three-dimensional stagnation point Bow of a viscoelastic fluid has been studied. Both nodal and saddle point regions of How have been considered. The unsteadiness in the Bow field is caused by the free stream velocity which varies arbitrarily with time. The governing boundary layer equations represented by a system of nonlinear partial differential equations have been solved numerically using a finite-difference scheme along with the quasilinearization technique in the nodal point region and a finite-difference scheme in combination with the parametric differentiation technique in the saddle point region. The skin friction coefficients for the viscoelastic fluid are found to be significantly less than those of the Newtonian fluid. The skin friction and heat transfer increase due to suction and reduce due to injection. The heat transfer at the wall increases with the Prandtl number. There is a flow reversal in the y-component of the velocity in the saddle point region. The absolute value of c (<<<0) for which reversal takes place is less than that of the Newtonian fluid. (C) 1997 Elsevier Science Ltd.
Resumo:
The non-similar boundary layer flow of a viscous incompressible electrically conducting fluid over a moving surface in a rotating fluid, in the presence of a magnetic field, Hall currents and the free stream velocity has been studied. The parabolic partial differential equations governing the flow are solved numerically using an implicit finite-difference scheme. The Coriolis force induces overshoot in the velocity profile of the primary flow and the magnetic field reduces/removes the velocity overshoot. The local skin friction coefficient for the primary flow increases with the magnetic field, but the skin friction coefficient for the secondary flow reduces it. Also the local skin friction coefficients for the primary and secondary flows are reduced due to the Hall currents. The effects of the magnetic field, Hall currents and the wall velocity, on the skin friction coefficients for the primary and secondary flows increase with the Coriolis force. The wall velocity strongly affects the flow field. When the wall velocity is equal to the free stream velocity, the skin friction coefficients for the primary and secondary flows vanish, but this does not imply separation. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
An analysis is developed to study the unsteady mixed convection flow over a vertical cone rotating in an ambient fluid with a time-dependent angular velocity in the presence of a magnetic field. The coupled nonlinear partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme. The local skin friction coefficients in the tangential and azimuthal directions and the local Nusselt number increase with the time when the angular velocity of the-cone increases, but the reverse trend is observed for decreasing angular velocity. However, these are not mirror reflection of each other. The magnetic field reduces the skin friction coefficient in the tangential direction and also the Nusselt number, but it increases the skin friction coefficient in the azimuthal direction. The skin friction coefficients and the Nusselt number increase with the buoyancy force.
Resumo:
In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background and purpose of the study: Herbal enhancers compared to the synthetic ones have shown less toxis effects. Coumarins have been shown at concentrations inhibiting phospoliphase C-Y (Phc-Y) are able to enhance tight junction (TJ) permeability due to hyperpoalation of Zonolous Occludense-1 (ZO-1) proteins. The purpose of this study was to evaluate the influence of ethanolic extract of Angelica archengelica (AA-E) which contain coumarin on permeation of repaglinide across rat epidermis and on the tight junction plaque protein ZO-1 in HaCaT cells. Methods: Transepidermal water loss (TEWL) from the rat skin treated with different concentrations of AA-E was assessed by Tewameter. Scanning and Transmission Electron Microscopy (TEM) on were performed on AA-E treated rat skin portions. The possibility of AA-E influence on the architecture of tight junctions by adverse effect on the cytoplasmic ZO-1 in HaCaT cells was investigated. Finally, the systemic delivery of repaglinide from the optimized transdermal formulation was investigated in rats. Results: The permeation of repaglinide across excised rat epidermis was 7-fold higher in the presence of AA-E (5% w/v) as compared to propylene glycol:ethanol (7:3) mixture. The extract was found to perturb the lipid microconstituents in both excised and viable rat skin, although, the effect was less intense in the later. The enhanced permeation of repaglinide across rat epidermis excised after treatment with AA-E (5% w/v) for different periods was in concordance with the high TEWL values of similarly treated viable rat skin. Further, the observed increase in intercellular space, disordering of lipid structure and corneocyte detachment indicated considerable effect on the ultrastructure of rat epidermis. Treatment of HaCaT cell line with AA-E (0.16% w/v) for 6 hrs influenced ZO-1 as evidenced by reduced immunofluorescence of anti-TJP1 (ZO-1) antibody in Confocal Laser Scanning Microscopy studies (CLSM) studies. The plasma concentration of repaglinide from transdermal formulation was maintained higher and for longer time as compared to oral administration of repaglinide. Major conclusion: Results suggest the overwhelming influence of Angelica archengelica in enhancing the percutaneous permeation of repaglinide to be mediated through perturbation of skin lipids and tight junction protein (ZO-1).
Resumo:
In a classic study, Kacser & Burns (1981, Genetics 97, 639-666) demonstrated that given certain plausible assumptions, the flux in a metabolic pathway was more or less indifferent to the activity of any of the enzymes in the pathway taken singly. It was inferred from this that the observed dominance of most wild-type alleles with respect to loss-of-function mutations did not require an adaptive, meaning selectionist, explanation. Cornish-Bowden (1987, J. theor. Biol. 125, 333-338) showed that the Kacser-Burns inference was not valid when substrate concentrations were large relative to the relevant Michaelis constants. We find that in a randomly constructed functional pathway, even when substrate levels are small, one can expect high values of control coefficients for metabolic flux in the presence of significant nonlinearities as exemplified by enzymes with Hill coefficients ranging from two to six, or by the existence of oscillatory loops. Under these conditions the flux can be quite sensitive to changes in enzyme activity as might be caused by inactivating one of the two alleles in a diploid. Therefore, the phenomenon of dominance cannot be a trivial ''default'' consequence of physiology but must be intimately linked to the manner in which metabolic networks have been moulded by natural selection.
Resumo:
In standard laboratory consolidation tests, only the fraction of soil passing through a particular size of the sieve, called the matrix material, is used. This size is usually restricted to 1/10 of the height of the consolidation ring. Particles larger than this size that are removed before the test may consist of gravel, fragments of rock, or other coarse materials. Hence, it is not possible to estimate the compressibility and permeability of the total material based on the compressibility and permeability behavior obtained from laboratory consolidation tests on the matrix material. In the present investigation an attempt has been made to estimate the compressibility and permeability behavior of the total material based on the compressibility and permeability behavior of the matrix material. The results indicate that the presence of coarse particles will reduce the compressibility of the soil in proportion to the coarse fraction present in the whole soil and will not affect the permeability of the soil for the range investigated. If the coarse fraction exceeds the Limiting percentage, the void ratio-vertical effective stress path will also start to deviate from the predicted path. An expression has been developed to estimate approximately the deviating pressure, and it is found to depend on the soil type as well as the percent clay fraction.
Resumo:
Numerical solutions of flow and heat transfer process on the unsteady flow of a compressible viscous fluid with variable gas properties in the vicinity of the stagnation line of an infinite swept cylinder are presented. Results are given for the case where the unsteady temperature field is produced by (i) a sudden change in the wall temperature (enthalpy) as the impulsive motion is started and (ii) a sudden change in the free-stream velocity. Solutions for the simultaneous development of the thermal and momentum boundary layers are obtained by using quasilinearization technique with an implicit finite difference scheme. Attention is given to the transient phenomenon from the initial flow to the final steady-state distribution. Results are presented for the skin friction and heat transfer coefficients as well as for the velocity and enthalpy profiles. The effects of wail enthalpy parameter, sweep parameter, fluid properties and transpiration cooling on the heat transfer and skin friction are considered.
Resumo:
In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.
Resumo:
We demonstrate that the hyper-Rayleigh scattering technique can be employed to measure the partition coefficient (k(p)) of a solute in a mixture of two immiscible solvents. Specifically, partition coefficients of six substituted benzoic acids in water/toluene (1:1 v/v) and water/chloroform (1:1 v/v) systems have been measured. Our values compare well with the k(p) values measured earlier by other techniques, The advantages offered by this technique are also discussed.
Resumo:
Quantitative estimates of the vertical structure and the spatial gradients of aerosol extinction coefficients have been made from airborne lidar measurements across the coastline into offshore oceanic regions along the east and west coasts of India. The vertical structure revealed the presence of strong, elevated aerosol layers in the altitude region of similar to 2-4 km, well above the atmospheric boundary layer (ABL). Horizontal gradients also showed a vertical structure, being sharp with the e(-1) scaling distance (D-0H) as small as similar to 150 km in the well-mixed regions mostly under the influence of local source effects. Above the ABL, where local effects are subdued, the gradients were much shallower (similar to 600-800 km); nevertheless, they were steep compared to the value of similar to 1500-2500 km reported for columnar AOD during winter. The gradients of these elevated layers were steeper over the east coast of India than over the west coast. Near-simultaneous radio sonde (Vaisala, Inc., Finland) ascents made over the northern Bay of Bengal showed the presence of convectively unstable regions, first from surface to similar to 750-1000 m and the other extending from 1750 to 3000 m separated by a stable region in between. These can act as a conduit for the advection of aerosols and favor the transport of continental aerosols in the higher levels (> 2 km) into the oceans without entering the marine boundary layer below. Large spatial gradient in aerosol optical and hence radiative impacts between the coastal landmass and the adjacent oceans within a short distance of < 300 km (even at an altitude of 3 km) during summer and the premonsoon is of significance to the regional climate.
Resumo:
Magnetic resonance studies reveal a marked difference between the binding of α-tocopherol and that of the corresponding acetate (vitamin E acetate) with dipalmitoylphosphatidylcholine (DPPC) vesicles. This is reflected in differences in the phase-transition curves of the DPPC vesicles incorporated with the two compounds, as well as in the 13C relaxation times and line widths. A model for the incorporation of these molecules in lipid bilayers has been suggested. α-Tocopherol binds strongly with the lipids, possibly through a hydrogen bond formation between the hydroxyl group of the former and one of the oxygen atoms of the latter. The possibility of such a hydrogen bond formation is excluded in vitamin E acetate, which binds loosely through the normal hydrophobic interaction. The model for lipid-vitamin interaction explains the in vitro decomposition of H2O2 by α-tocopherol. α-Tocopherol in conjuction with H2O2 can also act as a free-radical scavenger in the lipid phase. The incorporation of α-tocopherol and vitamin E acetate in DPPC vesicles enhances the permeability of lipid bilayers for small molecules such as sodium ascorbate.
Resumo:
Measurements of the ratio of diffusion coefficient to mobility (D/ mu ) of electrons in SF6-N2 and CCl2F2-N2 mixtures over the range 80
Resumo:
An empirical relation for temperature–independent molar polarization is suggested. When this relation was used, the thermal expansivity was estimated correctly from refractive index data.