28 resultados para Size-distribution Analysis
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of a particle size distribution on the fractional reaction has been analysed. The analysis shows that for non-isothermal TG the activation energy and frequency factor evaluated from the fractional reaction by conventional method depend on the particle size distribution, and this may lead to a kinetic compensating effect. Particle size distribution may also lead to an erroneous conclusion about the change in the mechanism of reaction.
Resumo:
An attractive microstructural possibility for enhancing the ductility of high-strength nanocrystals is to develop a bimodal grain-size distribution, in which the fine grains provide strength, and the coarser grains enable strain hardening. Annealing of nanocrystalline Ni over a range of temperatures and times led to microstructures with varying volume fractions of coarse grains and a change in texture. Tensile tests revealed a drastic reduction in ductility with increasing volume fraction of coarse grains. The reduction in ductility may be related to the segregation of sulphur to grain boundaries.
Resumo:
We demonstrate here that mesoporous tin dioxide (abbreviated M-SnO2) with a broad pore size distribution can be a prospective anode in lithium-ion batteries. M-SnO2 with pore size ranging between 2 and 7.5 nm was synthesized using a hydrothermal procedure involving two different surfactants of slightly different sizes, and characterized. The irreversible capacity loss that occurs during the first discharge and charge cycle is 890 mAh g(-1), which is smaller than the 1,010-mAh g(-1) loss recorded for mesoporous SnO2 (abbreviated S-SnO2) synthesized using a single surfactant. After 50 cycles, the discharge capacity of M-SnO2 (504 mAh g(-1)) is higher than that of S-SnO2 (401 mAh g(-1)) and solid nanoparticles of SnO2 (abbreviated nano-SnO2 < 4 mAh g(-1)) and nano-SnO2. Transmission electron microscopy revealed higher disorder in the pore arrangement in M-SnO2. This, in turn imparts lower stiffness to M-SnO2 (elastic modulus, E (R) a parts per thousand aEuro parts per thousand 14.5 GPa) vis-a-vis S-SnO2 (E (R) a parts per thousand aEuro parts per thousand 20.5 GPa), as obtained using the nanoindentation technique. Thus, the superior battery performance of M-SnO2 is attributed to its intrinsic material mechanical property. The fluidity of the internal microstructure of M-SnO2 resulted in a lower degree of aggregation of Sn particles compared to S-SnO2 and nano-SnO2 structural stabilization and long-term cyclability.
Resumo:
A model has been developed to simulate the foam characteristics obtained, when chemical (water) and physical (Freon) blowing agents are used together for the formation of polyurethane foams. The model considers the rate of reaction, the consequent rise in temperature of the reaction mixture, nucleation of bubbles, and mass transfer of CO2 and Freon to them till the time of gelation. The model is able to explain the experimental results available in literature. It further predicts that the nucleation period gets reduced with increase in water (at constant Freon content), whereas with increase in Freon (at constant water) concentration nucleation period decreases marginally leading to narrower bubble-size distribution. By the use of uniform sized nuclei added initially, the model predicts that the bubble-size distribution can be made independent of the rate of homogeneous nucleation and can, thus, offer an extra parameter for its control. (C) 2014 Wiley Periodicals, Inc.
Resumo:
Polyurethane foams with multimodal cell distribution exhibit superior mechanical and thermal properties. A technique for generating bimodal bubble size distribution exists in the literature, but it uses supercritical conditions. In the present work, an alternative based on milder operating conditions is proposed. It is a modification of reaction injection molding (RIM), using reactants already seeded with bubbles. The number density of the seeds determines if two nucleating events can occur. A bimodal bubble size distribution is obtained when this happens A mathematical model is used to test this hypothesis by simulating water blown free rise polyurethane foams. The effects of initial concentration of bubbles, temperature of the reactants, and the weight fraction of water are studied. The study reveals that for certain concentrations of initial number of bubbles, when initial temperature and weight fraction of water are high, it is possible to obtain a second nucleation event, leading to bimodal bubble size distribution.
Resumo:
We present an analysis of the breakdown of the most probable approximation to the Mayer cluster size distribution for clusters of size comparable to the size of the system. This failure is illustrated by considering an ideal Bose gas for which exact volume dependent reducible cluster integrals are available.
Resumo:
Nanoparticles are highly used in biological applications including nanomedicine. In this present study, the interaction of HepG2 hepatocellular carcinoma cells (HCC) with hydroxyapatite (HAp), zinc-doped hydroxyapatite, and titanium dioxide (TiO2) nanoparticles were investigated. Hydroxyapatite, zinc-doped hydroxyapatite and titanium dioxide nanoparticles were prepared by wet precipitation method. They were subjected to isochronal annealing at different temperatures. Particle morphology and size distribution were characterized by X-ray diffraction and transmission electron microscope. The nanoparticles were co-cultured with HepG2 cells. MTT assay was employed to evaluate the proliferation of tumor cells. The DNA damaging effect of HAp, Zn-doped HAp, and TiO2 nanoparticles in human hepatoma cells (HepG2) were evaluated using DNA fragmentation studies. The results showed that in HepG2 cells, the anti-tumor activity strongly depend on the size of nanoparticles in HCC cells. Cell cycle arrest analysis for HAp, zinc-doped HAp, and TiO2 nanoparticles revealed the influence of HAp, zinc-doped HAp, and titanium dioxide nanoparticles on the apoptosis of HepG2 cells. The results imply that the novel nano nature effect plays an important role in the biomedicinal application of nanoparticles.
Resumo:
The atomization characteristics of aviation biofuel discharging from a simplex swirl atomizer into quiescent atmospheric air are studied. The aviation biofuel is a mixture of 90% commercially available camelina-derived biofuel and 10% VonSol-53 (aromatics). The experiments are conducted in a spray test facility at varying fuel flow rate conditions. The measured characteristics include atomizer flow number, spray cone angle, breakup length of liquid sheet, wavelength of undulations on liquid sheet, and spray droplet size. The characteristics of biofuel sheet breakup are deduced from the captured images of biofuel spray. The measurements of spray droplet size distribution are obtained using Spraytec. The experimentally measured characteristics of the biofuel sheet breakup are compared with the predictions obtained from the liquid film breakup model proposed by Senecal et al. (1999). The measurements of wavelength and breakup length of the biofuel sheet discharging from the simplex swirl atomizer agree well with the model predictions. The model-predicted droplet size for the biofuel spray is significantly higher than the experimentally measured Sauter mean diameter (SMD). The spray droplets formed from the liquid sheet breakup undergo secondary atomization until 35-45 mm from the atomizer exit and thereafter the SMD increases downstream due to the combined effect of fuel evaporation and droplet coalescence. A good comparison is observed between the experimentally measured SMD of the biofuel spray and the predictions obtained using the empirical correlation reported in literature for sprays discharging from simplex swirl atomizers. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Granular filters are provided for the safety of water retaining structure for protection against piping failure. The phenomenon of piping triggers when the base soil to be protected starts migrating in the direction of seepage flow under the influence of seepage force. To protect base soil from migration, the voids in the filter media should be small enough but it should not also be too small to block smooth passage of seeping water. Fulfilling these two contradictory design requirements at the same time is a major concern for the successful performance of granular filter media. Since Terzaghi era, conventionally, particle size distribution (PSD) of granular filters is designed based on particle size distribution characteristics of the base soil to be protected. The design approach provides a range of D15f value in which the PSD of granular filter media should fall and there exist infinite possibilities. Further, safety against the two critical design requirements cannot be ensured. Although used successfully for many decades, the existing filter design guidelines are purely empirical in nature accompanied with experience and good engineering judgment. In the present study, analytical solutions for obtaining the factor of safety with respect to base soil particle migration and soil permeability consideration as proposed by the authors are first discussed. The solution takes into consideration the basic geotechnical properties of base soil and filter media as well as existing hydraulic conditions and provides a comprehensive solution to the granular filter design with ability to assess the stability in terms of factor of safety. Considering the fact that geotechnical properties are variable in nature, probabilistic analysis is further suggested to evaluate the system reliability of the filter media that may help in risk assessment and risk management for decision making.
Resumo:
The work reported hen was motivated by a desire to verify the existence of structure - specifically MP-rich clusters induced by sodium bromide (NaBr) in the ternary liquid mixture 3-methylpyridine (Mf) + water(W) + NaBr. We present small-angle X-ray scattering (SAXS) measurements in this mixture. These measurements were obtained at room temperature (similar to 298 K) in the one-phase region (below the relevant lower consolute points, T(L)s) at different values of X (i.e., X = 0.02 - 0.17), where X is the weight fraction of NaBr in the mixture. Cluster-size distribution, estimated on the assumption that the clusters are spherical, shows systematic behaviour in that the peak of the distribution shifts rewards larger values of cluster radius as X increases. The largest spatial extent of the clusters (similar to 4.5 nm) is seen at X = 0.17. Data analysis assuming arbitrary shapes and sizes of clusters gives a limiting value of cluster size (- 4.5 nm) that is not very sensitive to X. It is suggested that the cluster size determined may not be the same as the usual critical-point fluctuations far removed from the critical point (T-L). The influence of the additional length scale due to clustering is discussed from the standpoint of crossover from Ising to mean-field critical behaviour, when moving away from the T-L.
Resumo:
In the present investigation, two nozzle configurations are used for spray deposition, convergent nozzle (nozzle-A), and convergent nozzle with 2 mm parallel portion attached at its end (nozzle-C) without changing the exit area. First, the conditions for subambient aspiration pressure, i.e., pressure at the tip of the melt delivery tube, are established by varying the protrusion length of the melt delivery tube at different applied gas pressures for both of the nozzles. Using these conditions, spray deposits in a reproducible manner are successfully obtained for 7075 Al alloy. The effect of applied gas pressure, flight distance, and nozzle configuration on various characteristics of spray deposition, viz., yield, melt flow rate, and gas-to-metal ratio, is examined. The over-spray powder is also characterized with respect to powder size distribution, shape, and microstructure. Some of the results are explained with the help of numerical analysis presented in an earlier article.
Resumo:
The crucial role of the drug carrier surface chemical moeities on the uptake and in vitro release of drug is discussed here in a systematic manner. Mesoporous alumina with a wide pore size distribution (2-7 nm) functionalized with various hydrophilic and hydrophobic surface chemical groups was employed as the carrier for delivery of the model drug ibuprofen. Surface functionalization with hydrophobic groups resulted in low degree of drug loading (approximately 20%) and fast rate of release (85% over a period of 5 h) whereas hydrophilic groups resulted in a significantly higher drug payloads (21%-45%) and slower rate of release (12%-40% over a period of 5 h). Depending on the chemical moiety, the diffusion controlled (proportional to time(-0.5)) drug release was additionally observed to be dependent on the mode of arrangement of the functional groups on the alumina surface as well as on the pore characteristics of the matrix. For all mesoporous alumina systems the drug dosages were far lower than the maximum recommended therapeutic dosages (MRTD) for oral delivery. We envisage that the present study would aid in the design of delivery systems capable of sustained release of multiple drugs.
Resumo:
The inertial impaction of Lycopodium spores on single wires lying transverse to the direction of flow has been studied. The equations of particle motion in a potential flow field have been modified for the case when Stokes' law is inapplicable. Solutions to the above equations have been obtained by digital computation. Rec, the Reynolds number based on cylinder diameter, varied from 4 to 240; particle trajectories in a flow field at Rec = 10 have been determined for inertia parameter K = 1, 2, 4, 6, and 10. Ten trajectories were developed for the above cases by the numerical stepwise method. Experiments were performed by depositing Lycopodium spores on adhesive-coated wires of various diameters and at different velocities. The weight of dust deposited was determined with a microbalance. The experimental conditions were:. Wire diameters: 345, 457, 1500 μ. Particle diameter: 35 μ. Air velocities: 20-250 cm/sec. Inertia parameter: 1-60. The particle was considered as a point mass in the theoretical analysis. But in the experiments the ratio of particle size to wire size was not negligible (rp/rc = 0·1) and hence the effect of finite size of particle on collection efficiency due to the direct interception effect has been estimated. The effect of particle size distribution on collection efficiency has also been estimated. The experimental efficiencies obtained compare well with the calculated efficiencies at Rec = 10 when direct interception is taken into account.
Resumo:
We report a simple and rapid process for the room-temperature synthesis of gold nanoparticles using tannic acid, a green reagent, as both the reducing and stabilising agent. We systematically investigated the effect of pH on the size distribution of nanoparticles synthesized. Based on induction time and zeta- potential measurements, we show that particle size distribution is controlled by a fine balance between the rates of reduction (determined by the initial pH of reactants) and coalescence (determined by the pH of the reaction mixture) in the initial period of growth. This insight led to the optimal batch process for size-controlled synthesis of 2-10 nm gold nanoparticles - slow addition (within 10 minutes) of chloroauric acid into tannic acid.