8 resultados para Sinter

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pinning by second phase particles offers a potent means for limiting grain growth and enhancing superplasticity in alumina-based ceramics. In the present study, a colloidal technique was used to produce green bodies of alumina-yttria composites; at elevated temperatures, the yttria particles react with alumina to produce YAG particles. The densification and high temperature deformation characteristics of alumina-YAG composites were studied using conventional free sintering and sinter-forging, which involves the application of a compressive stress without any lateral constraints. It is shown that the YAG particles retard both densification and grain growth. The experiments indicate also that the presence of YAG particles does not significantly alter the stress exponent for creep deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

: Varistors prepared from ZnO with CaMnO3 perovskite as the only forming additive, exhibit voltage-limiting current-voltage characteristics with nonlinearity coefficient alpha up to 380 at low voltages of 1.8-12 V/mm. High nonlinearity is observed only with a suitable combination of processing parameters. The most crucial of them are (i) initial formulation of ceramics and (ii) the sintering temperature and conditions of post-sinter annealing. An electrically active intergranular phase is formed between ZnO grains with the composition ranging from Ca4Mn6Zn4O17 to Ca4Mn8Zn3O19, which creates the n-p-n heterojunctions. The low-voltage nonlinearity originates as a result of higher concentration of Mn(III)/Mn(IV) present at the grain boundary layer regions, being charge compensated by zinc vacancies. Under the external electric field, the barrier height is lowered due to the uphill diffusion of holes mediated by the acceptor states. Above the turn-on voltages, the unhindered transport of charge carriers between grains generates high current density associated with large nonlinearity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi3+ ions substituting at Ba-sites in a limited concentration range with another donor dopant occupying the Ti-sites in polycrystalline BaTiO3 enhanced the positive temperature coefficient of resistance (PTCR) by over seven orders of magnitude. These ceramics did not require normal post sinter annealing or a change to an oxygen atmosphere during annealing. These ceramics had low porosities coupled with better stabilities to large applied electric fields and chemically reducing atmospheres. Bi3+ ions limited the grain growth to less than 8 mum in size, they enhanced the concentration of acceptor-type trap centres at the grain-boundary-layer regions and maintained complete tetragonality at low grain sizes in BaTiO3 ceramics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine-particle, sinter-active yttria has been prepared by combustion of a redox compound, Y(N2H3COO)3·3H2O and mixtures of Y(N2H3COO)3·3H2O�NH4NO3 or NH4ClO4 as well as yttrium nitrate and hydrazine-based fuels. The fineparticle nature of the combustion-derived yttria has been investigated using powder density, particle size and BET surface area measurements. The uniaxially, cold-pressed fine-particle yttria when sintered at 1450�1500 °C achieved 98% theoretical density and showed a fine-grain (1�2 µm) microstructure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the oxide ceramics have widely been investigated for their biocompatibility, non-oxide ceramics, such as SiAlON and SiC are yet to be explored in detail. Lack of understanding of the biocompatibility restricts the use of these ceramics in clinical trials. It is hence, essential to carry out proper and thorough study to assess cell adhesion, cytocompatibility and cell viability on the non-oxide ceramics for the potential applications. In this perspective, the present research work reports the cytocompatibility of gas pressure sintered SiAlON monolith and SiAlON-SiC composites with varying amount of SIC, using connective tissue cells (L929) and bone cells (Saos-2). The quantification of cell viability using MTT assay reveals the non-cytotoxic response. The cell viability has been found to be cell type dependent. An attempt has been made to discuss the cytocompatibility of the developed composites in the light of SiC content and type of sinter additives. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work demonstrates the synthesis of Cu-10 wt% TiB2 composites with a theoretical density of more than 90% by tailoring the spark plasma sintering (SPS) conditions in the temperature range of 400-700 degrees C. Interestingly, 10 wt% Pb addition to Cu-10 wt% TiB2 lowers the sinter density and the difference in the densification behavior of the investigated compositions was discussed in reference to the current profile recorded during a SPS cycle. The sintering kinetics and phase assemblage were also discussed in reference to surface melting of the constituents prior to bulk melting temperature, temperature dependent wettability of Pb on Cu, diffusion kinetics of Cu as well as the formation of various oxides. An important result is that a high hardness of around 2 GPa and relative density close to 92% qtheoretical was achieved for the Cu-10 wt% TiB2-10 wt% Pb composite, and such a combination has never been achieved before using any conventional processing route.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to the widely reported beneficial aspects of spark plasma sintering in developing materials with better properties, we report here two interesting aspects recorded with difficult-to-sinter titanium diboride: (a) in situ formation of second phase (TiB) and (b) inferior hardness (by similar to 30%) and elastic modulus (by similar to 20%) for spark plasma sintered TiB2, with respect to hot pressed TiB2. The formation of TiB is discussed with reference to the enhanced reaction kinetics in the presence of pulsed electric field. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing threats due to increased use of small-caliber armor piercing projectiles demand the development of new light-weight body armor materials. In this context, TiB2 appears to be a promising ceramic material. However, poor sinterability and low fracture toughness remain two major issues for TiB2. In order to address these issues together, Ti as a sinter-aid is used to develop TiB2-(x wt pct Ti), (x = 10, 20) homogeneous composites and a bi-layered composite (BLC) with each layer having Ti content of 10 and 20 wt pct. The present study uniquely demonstrates the efficacy of two-stage spark plasma sintering route to develop dense TiB2-Ti composites with an excellent combination of nanoscale hardness (similar to 36 GPa) and indentation fracture toughness (similar to 12 MPa m(1/2)). In case of BLC, these properties are not compromised w.r.t. homogeneous composites, suggesting the retention of baseline material properties even in the bi-layer design due to optimal relief of residual stresses. The better indentation toughness of TiB2-(10 wt pct Ti) and TiB2-(20 wt pct Ti) composites can be attributed to the observed crack deflection/arrest, indicating better damage tolerance. Transmission electron microscope investigation reveals the presence of dense dislocation networks and deformation twins in alpha-Ti at the grain boundaries and triple pockets, surrounded by TiB2 grains. The dynamic strength of around 4 GPa has been measured using Split Hopkinson Pressure Bar tests in a reproducible manner at strain rates of the order of 600 s(-1). The damage progression under high strain rate has been investigated by acquiring real time images for the entire test duration using ultra-high speed imaging. An attempt has been made to establish microstructure-property correlation and a simple analysis based on Mohr-Coulomb theory is used to rationalize the measured strength properties.