471 resultados para Single-crystalline

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As-deposited high Tc superconducting Y1Ba2Cu3O7−x films with zero resistance temperatures of similar, equals89 K and critical current densities about 0.7×106 A/cm2 at 77 K have been reproducibly fabricated at a substrate holder temperature at 650°C, using pulsed laser deposition, without post-annealing. One key to these results is the injection of gaseous oxygen into laser produced plume just in front of the target. In this way, the correct amount of oxygen is incorporated into the as-grown film so that post-deposition treatment becomes unnecessary. Axial ion channeling in these as-deposit high Tc superconducting films on (100) SrTiO3 and X-ray photoelectron spectroscopy (XPS) on the film surfaces were performed. Angular yield profile near the film surface for Ba, and the surface peak intensity were measured using 3 MeV He ions. For channeling normal to the substrate a minimum yield of 7%, compared to similar, equals3% for single crystals, was obtained. The results of ion channeling and XPS studies indicate that the as-deposited films have good crystallinity as well as toichiometry to within similar, equals1 nm of the film surface. The in-situ growth of such high Tc and Jc films is an important step in the use of the laser deposition technique to fabricate multilayer structures and the surface perfection is of importance in tunneling devices such as Josephson junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High quality, single-crystalline alpha-MoO3 nanofibers are synthesized by rapid hydrothermal method using a polymeric nitrosyl-complex of molybdenum(II) as molybdenum source without employing catalysts, surfactants, or templates. The possible reaction pathway is decomposition and oxidation of the complex to the polymolybdate and then surface condensation on the energetically favorable 001] direction in the initially formed nuclei of solid alpha-MoO3 under hydrothermal conditions. Highly crystalline alpha-MoO3 nanofibers have grown along 001] with lengths up to several micrometres and widths ranging between 280 and 320 nm. The alpha-MoO3 nanofibers exhibit desirable electrochemical properties such as high capacity reversibility as a cathode material of a Li-ion battery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical transport measurements on ultrathin single-crystalline Au nanowires, synthesized via a wet chemical route, show an unexpected insulating behavior. The linear response electrical resistance exhibits a power-law dependence on temperature. In addition, the variation of current over a wide range of temperature and voltage obeys a universal scaling relation that provides compelling evidence for a non-Fermi liquid behavior. Our results demonstrate that the quantum ground state In ultrathin nanowires of simple metallic systems can be radically different from their bulk counterparts and can be described In terms of a Tomonaga-Luttinger liquid (TLL), in the presence of remarkably strong electron-electron interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first principles based density functional calculation we study the mechanical, electronic and transport properties of single crystalline gold nanowires. While nanowires with the diameter less than 2 nm retain hexagonal cross-section, the larger diameter wires show a structural smoothening leading to circular cross-section. These structural changes significantly affect the mechanical properties of the wires, however, strength remains comparable to the bulk. The transport calculations reveal that the conductivity of these wires are in good agreement with experiments. The combination of good mechanical, electronic and transport properties make these wires promising as interconnects for nano devices. Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.4796188]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-pot synthesis of amorphous iron oxide nanoparticles with two different dimensions (<5 nm and 60 nm) has been achieved using the reverse micelle method, with <5 nm nanoparticles separated from the stable colloid by exploiting their magnetic behaviour. The transformation of the as-prepared amorphous powders into Fe3O4 and Fe2O3 phases (gamma and alpha) is achieved by carrying out controlled annealing at elevated temperatures under different optimized conditions. The as-prepared samples resulting from micellar synthesis and the corresponding annealed ones are thoroughly characterized by powder X-ray diffraction, transmission electron microscopy (TEM), and by Raman and X-ray photoelectron spectroscopies. Expectedly, the magnetic characteristics of Fe3O4 and Fe2O3 phase (gamma and alpha) nanoparticles are found to have strong dependence on their phase, dimension, and morphology. The coercivity of Fe3O4 and Fe2O3 (gamma and alpha) nanoparticles is reasonably high, even though high resolution TEM studies bring out that these nanoparticles are single crystalline. This is in contrast with previous reports wherein poly-crystallinity of iron oxides nanoparticles has been regarded as a prerequisite for high coercivity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an effort to find a simple and common single-source precursor route for the group 13 metal nitride semiconductor nanostructures, the complexes formed by the trichlorides of Al, Ga and In with urea have been investigated. The complexes, characterized by X-ray crystallography and other techniques, yield the nitrides on thermal decomposition. Single crystalline nanowires of AlN, GaN and InN have been deposited on Si substrates covered with Au islands by using the complexes as precursors. The urea complexes yield single crystalline nanocrystals under solvothermal conditions. The successful synthesis of the nanowires and nanocrystals of these three important nitrides by a simple single-precursor route is noteworthy and the method may indeed be useful in practice.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the transition from single crystalline to polycrystalline behavior, the available data show the strength increasing or decreasing as the number of grains in a cross section is reduced. Tensile experiments were conducted on polycrystalline Ni with grain sizes (d) between 16 and 140 mu m and varying specimen thickness (t), covering a range of lambda (-t/d) between similar to 0.5 and 20. With a decrease in lambda, the data revealed a consistent trend of strength being independent of lambda at large lambda, an increase in strength, and then a decrease in strength. Microstructural studies revealed that lower constraints enabled easier rotation of the surface grains and texture evolution, independent of the specimen thickness. In specimen interiors, there was a greater ease of rotation in thinner samples. Measurements of misorientation deviations within grains revealed important differences in the specimen interiors. A simple model is developed taking into account the additional geometrically necessary dislocations due to variations in the behavior of surface and interior grains, leading to additional strengthening. A suitable combination of this strengthening and surface weakening can give rise to wide range of possibilities with a decrease in lambda, including weakening, strengthening, and strengthening and weakening.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc microtower and platestacks were synthesized by thermal evaporation of zinc. This synthesis was carried out under high vacuum conditions in the absence of catalyst and carrier gas. The morphology, composition and microstructural properties of the Zn nanostructures were studied by XRD, SEM and TEM. The synthesized microtowers and platestacks were single crystalline in nature. These microtowers and platestacks showed a layered structures consisting of several hexagonal nanoplates. Based on the morphological and composition analysis, we have proposed a vapor-solid mechanism to explain the growth of these nanostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interfacial shear rheological properties of a continuous single-crystalline film of CuS and a 3D particulate gel of CdS nanoparticles (3−5 nm in diameter) formed at toluene−water interfaces have been studied. The ultrathin films (50 nm in thickness) are formed in situ in the shear cell through a reaction at the toluene−water interface between a metal−organic compound in the organic layer and an appropriate reagent for sulfidation in the aqueous layer. Linear viscoelastic spectra of the nanofilms reveal solid-like rheological behavior with the storage modulus higher than the loss modulus over the range of angular frequencies probed. Large strain amplitude sweep measurements on the CdS nanofilms formed at different reactant concentrations suggest that they form a weakly flocculated gel. Under steady shear, the films exhibit a yield stress, followed by a steady shear thinning at high shear rates. The viscoelastic and flow behavior of these films that are in common with those of many 3D “soft” materials like gels, foams, and concentrated colloidal suspensions can be described by the “soft” glassy rheology model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Measurements of magnetic and dielectric properties of single crystalline ErMnO3 establish the Neel and ferroelectric transition temperatures to be 77 K and 588 K respectively. The dielectric constant of ErMnO3 shows an anomalous jump at T-N. At higher temperatures, the dielectric constant undergoes a significant decrease on application of magnetic fields. The study clearly exhibits multiferroic and magnetoelectric nature of ErMnO3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO nanoneedles were successfully deposited on flexible polymer substrates at room temperature by activated reactive evaporation. Neither a catalyst nor a template was employed in this synthesis. These synthesized needles measured 500 - 600 nm in length and its diameter varied from 30 - 15 nm from the base to the tip. The single-crystalline nature of the nanoneedle was observed by high-resolution transmission electron microscopy studies. The Raman studies on these nanoneedles had shown that they are oxygen deficient in nature. A possible growth mechanism has been proposed here, in which the nanoneedles nucleate and grow in the gas phase by vapor-solid mechanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc film containing hexagonal plate stack and tower-like micro structures were grown on Si substrates at high temperature by thermal evaporation. Thermal oxidation studies on these micro structures have shown that ZnO nanoneedles selectively grow from the facets of the zinc microstructure at temperature above 300 degrees C in atmosphere TEM analysis showed that single crystalline and bicrystalline nanoneedles were formed in this oxidation process and the growth direction of these nanoneedles was identified along the [1 1 (2) overbar 0]. Based on the structural studies and morphological observation, we have proposed a possible mechanism for the selective growth of ZnO nanoneedles during thermal oxidation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present here magnetization, specific heat, and Raman studies on single-crystalline specimens of the first pyrochlore member Sm2Ti2O7 of the rare-earth titanate series. Its analogous compound Sm2Zr2O7 in the rare-earth zirconate series is also investigated in the polycrystalline form. The Sm spins in Sm2Ti2O7 remain unordered down to at least T=0.5 K. The absence of magnetic ordering is attributed to very small values of exchange (θcw∼−0.26 K) and dipolar interaction (μeff∼0.15 μB) between the Sm3+ spins in this pyrochlore. In contrast, the pyrochlore Sm2Zr2O7 is characterized by a relatively large value of Sm-Sm spin exchange (θcw∼−10 K); however, long-range ordering of the Sm3+ spins is not established at least down to T=0.67 K due to frustration of the Sm3+ spins on the pyrochlore lattice. The ground state of Sm3+ ions in both pyrochlores is a well-isolated Kramers doublet. The higher-lying crystal field excitations are observed in the low-frequency region of the Raman spectra of the two compounds recorded at T=10 K. At higher temperatures, the magnetic susceptibility of Sm2Ti2O7 shows a broad maximum at T=140 K, while that of Sm2Zr2O7 changes monotonically. Whereas Sm2Ti2O7 is a promising candidate for investigating spin fluctuations on a frustrated lattice, as indicated by our data, the properties of Sm2Zr2O7 seem to conform to a conventional scenario where geometrical frustration of the spin excludes their long-range ordering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate that commonly face-centered cubic (fcc) metallic nanowires can be stabilized in hexagonal structures even when their surface energy contribution is relatively small. With a modified electrochemical growth process, we have grown purely single-crystalline 4H silver nanowires (AgNWs) of diameters as large as 100 nm within nanoporous anodic alumina and polycarbonate templates. The growth process is not limited by the/Ag Nernst equilibrium potential, and time-resolved imaging with high-resolution transmission electron microscopy (TEM) indicates a kinematically new mechanism of nanowire growth. Most importantly, our experiments aim to separate the effects of confinement and growth conditions on the crystal structure of nanoscale systems.