17 resultados para Single drug dose

em Indian Institute of Science - Bangalore - Índia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We conducted the present study to investigate the therapeutic effects of the antiresorptive agent zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALF), in a rat model of postmenopausal osteoporosis. Female Wistar rats were ovariectomized (OVX) or sham-operated at 3 months of age. Twelve weeks post surgery, rats were randomized into six groups: (1) sham + vehicle, (2) OVX + vehicle, (3) OVX + ZOL (100 mu g/kg, i.v. single dose), (4) OVX + ZOL (50 mu g/kg, i.v. single dose), (5) OVX + ALF (0.5 mu g/kg, oral gauge daily) and (6) OVX + ZOL (50 mu g/kg, i.v. single dose) + ALF (0.5 mu g/kg, oral gauge daily) for 12 weeks. After treatment, we evaluated the mechanical properties of the lumbar vertebra and femoral mid-shaft. Femurs were also tested for bone density, porosity and trabecular micro-architecture. Biochemical markers in serum and urine were also determined. With respect to improvement in the mechanical strength of the lumbar spine and the femoral mid-shaft, the combination treatment of ZOL and ALF was more effective than each administered as a monotherapy. Moreover, combination therapy using ZOL and ALF preserved the trabecular micro-architecture and cortical bone porosity. Furthermore, the combination treatment of ZOL and ALF corrected the decrease in serum calcium and increase in serum alkaline phosphatase and the tartarate-resistant acid phosphatase level better than single-drug therapy using ZOL or ALF in OVX rats. In addition, the combination treatment of ZOL and ALF corrected the increase in urine calcium, phosphorous and creatinine levels better than single-drug therapy using ZOL or ALF in OVX rats. These data suggest that the combination treatment of ZOL and ALF has a therapeutic advantage over each monotherapy for the treatment of osteoporosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objectives: Disuse by bed rest, limb immobilization or space flight causes rapid bone loss. We conducted the present study to investigate the therapeutic effects of zoledronic acid (ZOL), alone and in combination with alfacalcidol (ALP) in a rat model of disuse osteoporosis. Methods: In the present study, 3-month-old male Wistar rats had their right hind-limb immobilized (RHLI) for 10 weeks to induce osteopenia, then were divided into four groups: 1 - RHLI positive control; 2 - RHLI plus ZOL (50 mu g/kg, i.v. single dose); 3 - RHLI plus ALP (0.5 mu g/kg, oral gauge daily); 4- RHLI plus ALP (0.5 mu g/kg, oral gauge daily) plus ZOL (50 mu g/kg, i.v. single dose) for another 10 weeks. One group of non-immobilized rats was used as negative control. At the end of the treatment, the femurs were removed and tested for bone porosity, bone mechanical properties, and bone dry and ash weight. Results: Combination therapy with ZOL plus ALP was more effective in decreasing bone porosity than each drug administered as monotherapy in RHLI rats. With respect to improvement in the mechanical strength of the femoral mid-shaft, the combination treatment of ZOL plus ALP was more effective than each drug administered as a monotherapy. Moreover, combination therapy using ZOL plus ALF was more effective in improving dry bone and ash weight, than single-drug therapy using ZOL or ALP in RHLI rats. Conclusions: These data suggest that combination therapy with ZOL plus ALP represents a potentially useful therapeutic option for the treatment of disuse osteoporosis. (C) 2014 Elsevier Editora Ltda. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of malathion on jugular plasma concentrations of follicle-stimulating hormone (FSH), estradiol (E2), progesterone (P4) and acetylcholinesterase (AchE) on conception in dairy cattle during a cloprostenol (prostaglandin F2-alpha analogue, PG)-induced estrus was studied. Malathion (1 mg/kg, intraruminally) given at the onset of estrus (48 h after PG) did not alter the plasma FSH or E2 concentrations but significantly (P < 0.05) inhibited plasma P4 concentration. The mean P4 concentration in the malathion-treated group on days 8 and 12 were 0.8 +/- 0.4 and 1.0 +/- 0.5 ng/ml, as compared to 2.6 +/- 0.0 and 2.4 +/- 0.3 ng/ml in the control group. There was a nonsignificant (P > 0.05) inhibition of plasma AchE activity in malathion-treated cattle. Conception was 16.6% in malathion-treated cows and 50% in controls. Inhibition of progesterone secretion and poor conception occurred after the single intraruminal dose of malathion at the onset of estrus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Importance of the field: The shift in focus from ligand based design approaches to target based discovery over the last two to three decades has been a major milestone in drug discovery research. Currently, it is witnessing another major paradigm shift by leaning towards the holistic systems based approaches rather the reductionist single molecule based methods. The effect of this new trend is likely to be felt strongly in terms of new strategies for therapeutic intervention, new targets individually and in combinations, and design of specific and safer drugs. Computational modeling and simulation form important constituents of new-age biology because they are essential to comprehend the large-scale data generated by high-throughput experiments and to generate hypotheses, which are typically iterated with experimental validation. Areas covered in this review: This review focuses on the repertoire of systems-level computational approaches currently available for target identification. The review starts with a discussion on levels of abstraction of biological systems and describes different modeling methodologies that are available for this purpose. The review then focuses on how such modeling and simulations can be applied for drug target discovery. Finally, it discusses methods for studying other important issues such as understanding targetability, identifying target combinations and predicting drug resistance, and considering them during the target identification stage itself. What the reader will gain: The reader will get an account of the various approaches for target discovery and the need for systems approaches, followed by an overview of the different modeling and simulation approaches that have been developed. An idea of the promise and limitations of the various approaches and perspectives for future development will also be obtained. Take home message: Systems thinking has now come of age enabling a `bird's eye view' of the biological systems under study, at the same time allowing us to `zoom in', where necessary, for a detailed description of individual components. A number of different methods available for computational modeling and simulation of biological systems can be used effectively for drug target discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural information on the solid forms of efavirenz, a non-nucleoside reverse transcriptase inhibitor, is limited, although various polymorphic forms of this drug have been patented. We report here structural studies of four new crystal forms a pure form, a cyclohexane solvate, and cocrystals with 1,4-cyclohexanedione and 4,4'-bipyridine. Temperature dependent single-crystal to single-crystal phase transitions are observed for the pure form and for the cyclohexane solvate with an increase in the number of symmetry independent molecules, Z', upon a lowering of temperature. Other issues related to these solid forms, such as thermal stability, conformational flexibility, and high Z' occurrences, are addressed by using a combined experimental and computational approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initiation of follicular growth by specific hormonal stimuli in ovaries of immature rats and hamsters was studied by determining the rate of incorporation of3H-thymidine into ovarian DNAin vitro. Incorporation was considered as an index of DNA synthesis and cell multiplication. A single injection of pregnant mare serum gonadotropin could thus maximally stimulate by 18 hr3H-thymidine incorporation into DNA of the ovary of immature hamsters. Neutralization of pregnant mare serum gonadotropin by an antiserum to ovine follicle stimulating hormone only during the initial 8–10 hr and not later could inhibit the increase in3H-thymidine incorporationin vitro observed at 18 hr, suggesting that the continued presence of gonadotropin stimulus was not necessary for this response. The other indices of follicular growth monitored such as ovarian weight, serum estradiol and uterine weight showed discernible increase at periods only after the above initial event. A single injection of estrogen (diethyl stilbesterol or estradiol-l7β) could similarly cause 18 hr later, a stimulation in the rate of incorporation of3H-thymidine into DNAin vitro in ovaries of immature rats. The presence of endogenous gonadotropins, however, was obligatory for observing this response to estrogen. Evidence in support of the above was two-fold: (i) administration of antiserum to follicle stimulating hormone or luteinizing hormone along with estrogen completely inhibited the increase in3H-thymidine incorporation into ovarian DNAin vitro; (ii) a radioimmunological measurement revealed following estrogen treatment, the presence of a higher concentration of endogenous follicle stimulating hormone in the ovary. Finally, administration of varying doses of ovine follicle stimulating hormone along with a constant dose of estrogen to immature rats produced a dose-dependent increment in the incorporation of3H-thymidine into ovarian DNAin vitro. These observations suggested the potentiality of this system for developing a sensitive bioassay for follicle stimulating hormone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nevirapine forms the mainstay of our efforts to curtail the pediatric AIDS epidemic through prevention of mother-to-child transmission of HIV-1. A key limitation, however, is the rapid selection of HIV-1 strains resistant to nevirapine following the administration of a single dose. This rapid selection of resistance suggests that nevirapine-resistant strains preexist in HIV-1 patients and may adversely affect outcomes of treatment. The frequencies of nevirapine-resistant strains in vivo, however, remain poorly estimated, possibly because they exist as a minority below current assay detection limits. Here, we employ stochastic simulations and a mathematical model to estimate the frequencies of strains carrying different combinations of the common nevirapine resistance mutations K103N, V106A, Y181C, Y188C, and G190A in chronically infected HIV-1 patients naive to nevirapine. We estimate the relative fitness of mutant strains from an independent analysis of previous competitive growth assays. We predict that single mutants are likely to preexist in patients at frequencies (similar to 0.01% to 0.001%) near or below current assay detection limits (>0.01%), emphasizing the need for more-sensitive assays. The existence of double mutants is subject to large stochastic variations. Triple and higher mutants are predicted not to exist. Our estimates are robust to variations in the recombination rate, cellular superinfection frequency, and the effective population size. Thus, with 10(7) to 10(8) infected cells in HIV-1 patients, even when undetected, nevirapine-resistant genomes may exist in substantial numbers and compromise efforts to prevent mother-to-child transmission of HIV-1, accelerate the failure of subsequent antiretroviral treatments, and facilitate the transmission of drug resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, an attempt was made to study the acute and sub-acute toxicity profile of G3-COOH Poly (propyl ether imine) PETIM] dendrimer and its use as a carrier for sustained delivery of model drug ketoprofen. Drug-dendrimer complex was prepared and characterized by FTIR, solubility and in vitro drug release study. PETIM dendrimer was found to have significantly less toxicity in A541 cells compared to Poly amido amine (PAMAM) dendrimer. Further, acute and 28 days sub-acute toxicity measurement in mice showed no mortality, hematological, biochemical or histopathological changes up to 80 mg/kg dose of PETIM dendrimer. The results of study demonstrated that G3-COOH PETIM dendrimer can be used as a safe and efficient vehicle for sustained drug delivery. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA topoisomerases are ubiquitous group of enzymes altering the topology of DNA by concerted breakage and rejoining of the phosphodiester backbone of DNA. The enzymes are classified based on the pattern of DNA cleavage. Type IA enzymes found in all bacteria nick the DNA and attach themselves covalently to the 5' side of the nick during the first transesterification reaction. Most of the information on this group of enzymes comes from studies with E. coli topoisomerase I and III. Members of type IA group are single subunit Zn++ metalloenzymes recognizing single stranded DNA without high degree of sequence specificity during relaxation reaction of negatively super coiled DNA. So far no inhibitors are known for this group of enzymes inspite of their important role in maintaining homeostasis of DNA topology. Molecular characterization of DNA topoisomerase I from mycobacteria has revealed some of the important features of type IA enzymes hitherto unknown and provide scope for identifying novel inhibitors. The present review describes the recent developments in the area summarizing the distinctive features of mycobacterial topoisomerase I. The enzyme has several properties not shared by either type IA or 113 enzymes with respect to DNA binding, recognition, sequence specificity and interaction pattern. The physiological basis of the unusual features is discussed. The unique properties described would aid in developing the enzyme as a target molecule in pharmaceutical design. In addition, the findings lead to address some fundamental questions on the intracellular role of topoisomerase I in the biology of mycobacteria which are one of the most formidable group of pathogenic organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A superior drug formulation capable of achieving efficient osteogenesis is in imperative demand for the treatment of osteoporosis. In the present study we investigated the potential of using novel risedronate-hydroxyapatite (HA) nanoparticle based formulation in an animal model of established osteoporosis. Nanoparticles of HA loaded with risedronate (NHLR) of various sizes (80-130 nm) were generated for bone targeted drug delivery. Three months after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups and treated with various doses of NHLR (500,350 and 250 mu g/kg intravenous single dose) and sodium risedronate (500 mu g/kg, intravenous single dose). Untreated OVX and sham OVX served as controls. One month after drug administration, the left tibia and femur were tested for bone mechanical properties and histology, respectively. In the right femur, bone density was measured by method based on Archimedes principle and bone porosity analyses were performed using X-ray imaging. NHLR (250 mu g/kg) showed a significant increase in bone density and reduced bone porosity when compared with OVX control. Moreover, NHLR (250 mu g/kg) significantly increased bone mechanical properties and bone quality when compared with OVX control. The results strongly suggest that the NHLR, which is a novel nanoparticle based formulation, has a therapeutic advantage over risedronate sodium monotherapy for the treatment of osteoporosis in a rat model of postmenopausal osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently beta-adrenergic receptor blockers are considered to be potential drugs under investigation for preventive or therapeutic effect in osteoporosis. However, there is no published data showing the comparative study of beta-blockers with well accepted agents for the treatment of osteoporosis. To address this question, we compared the effects of propranolol with well accepted treatments like zoledronic acid and alfacalcidol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided into 6 equal groups, randomized to treatments zoledronic acid (100 mu g/kg, intravenous single dose); alfacalcidol (0.5 mu g/kg, oral gauge daily); propranolol (0.1 mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of treatment serum calcium and alkaline phosphatase were assayed. Femurs were removed and tested for bone density, bone porosity, bone mechanical properties and trabecular micro-architecture. Propranolol showed a significant decrease in alkaline phosphatase levels and bone porosity in comparison to OVX control. Moreover, propranolol significantly improved bone density, bone mechanical properties and inhibited the deterioration of trabecular microarchitecture when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol can be a candidate therapeutic drug for the management of postmenopausal osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H center dot center dot center dot O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we present the characterization and performance studies of self-priming peristaltic pump for drug delivery application. Conventional materials and methods have been used to fabricate single cam mechanism based peristaltic micropump. To control the fluid flow precisely in micro liter range, a single cam mechanism has been used instead of conventional roller mechanism. The fabricated pump is suitable for liquid, gas and foam. Using water as a fluid medium, a flow rate of 12.5 mu l/rpm is achieved using a flexible silicone tube of inner diameter 1.5 mm and outer diameter 2.5 mm. Other than water, higher viscosity fluids showed a decrease in the flow rate. The designed micropump exhibits a linear dependence of flow rate in the voltage range of 2.5V to 5V. Drug delivery using micropump demands that the micropump has to pump against the blood pressure (maximum of 25kPa) with constant flow rate. Here the designed pump is able to pump the liquid with a constant flow rate of 500 mu l/min (water) up to a backpressure of 40kPa. It was observed that, by increasing the backpressure above 40kPa, flow rate of the pump gradually decreased to 125 mu l/min at 120kPa. In addition, Micropump based drug delivery demands that the micropump should be normally in closed condition in all the positions to avoid drug leakage and bleeding. Hence, micropump has been characterized for normally closed condition in all positions (0 degrees to 360 degrees). However, a minute leak of 0.14 % was found for an inlet pressure of 140kPa. Also, the normally closed region with no leak is observed up to 60kPa of pressure in all positions (0 degrees to 360 degrees).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC50 values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.