56 resultados para Simultaneous determinations
em Indian Institute of Science - Bangalore - Índia
Resumo:
Among the various Mn compounds, both MnO2 and Mn(OH)2 are electrochemically active in supercapacitor studies. MnO2 and Mn(OH)2 are simultaneously deposited, through a one-pot method, on the anode and cathode, respectively, of a galvanostatic electrolysis cell consisting of aqueous Mn(NO3)2 electrolyte. MnO2 and Mn(OH)2 coated stainless steel (SS) electrodes are found to exhibit a capacitive behavior with a high specific capacitance. MnO2/SS and Mn(OH)2/SS electrodes are used as the negative and positive electrodes, respectively, in assembling nonsymmetrical capacitors and testing. The results indicate that both Mn-based electrodes prepared simultaneously in a single electrolysis possess interesting electrochemical properties for supercapacitor application.
Resumo:
n this paper we study the genericity of simultaneous stabilizability, simultaneous strong stabilizability, and simultaneous pole assignability, in linear multivariable systems. The main results of the paper had been previously established by Ghosh and Byrnes using state-space methods. In contrast, the proofs in the present paper are based on input-output arguments, and are much simpler to follow, especially in the case of simultaneous and simultaneous strong stabilizability. Moreover, the input-output methods used here suggest computationally reliable algorithms for solving these two types of problems. In addition to the main results, we also prove some lemmas on generic greatest common divisors which are of independent interest.
Resumo:
A novel method, designated the holographic spectrum reconstruction (HSR) method, is proposed for achieving simultaneous display of the spectrum and image of an object in a single plane. A study of the scaling behaviour of both the spectrum and the image has been carried out and based on this study, it is demonstrated that a lensless coherent optical processor can be realized.
Resumo:
The simultaneous state and parameter estimation problem for a linear discrete-time system with unknown noise statistics is treated as a large-scale optimization problem. The a posterioriprobability density function is maximized directly with respect to the states and parameters subject to the constraint of the system dynamics. The resulting optimization problem is too large for any of the standard non-linear programming techniques and hence an hierarchical optimization approach is proposed. It turns out that the states can be computed at the first levelfor given noise and system parameters. These, in turn, are to be modified at the second level.The states are to be computed from a large system of linear equations and two solution methods are considered for solving these equations, limiting the horizon to a suitable length. The resulting algorithm is a filter-smoother, suitable for off-line as well as on-line state estimation for given noise and system parameters. The second level problem is split up into two, one for modifying the noise statistics and the other for modifying the system parameters. An adaptive relaxation technique is proposed for modifying the noise statistics and a modified Gauss-Newton technique is used to adjust the system parameters.
Resumo:
A very general and numerically quite robust algorithm has been proposed by Sastry and Gauvrit (1980) for system identification. The present paper takes it up and examines its performance on a real test example. The example considered is the lateral dynamics of an aircraft. This is used as a vehicle for demonstrating the performance of various aspects of the algorithm in several possible modes.
Resumo:
Mit einer direkten Methode, bei der der Erdelyi-Kober- und der modifizierte Hankel-Operator Anwendung finden, werden gewisse Systeme aus zwei bzw. drei Paaren dualer Integralgleichungen mit Bessel-Kernen in geschlossener Form gelöst. Für bestimmte Funktionenklassen und Ordnungen der Bessel-Funktionen ist die Vorgehensweise angebrachter und geeigneter als die bereits existierenden Methoden.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of inhomogeneous infinite simultaneous equations encountered in the analysis of surface acoustic wave propagation along the periodically perturbed surface of a piezoelectric medium.
Resumo:
It is shown that a method based on the principle of analytic continuation can be used to solve a set of infinite simultaneous equations encountered in solving for the electric field of a periodic electrode structure.
Resumo:
A new and simple route for the synthesis of thioesters starting from carboxylic acids and alcohols is reported by using tetrathiomolybdate as the key sulfur transfer reagent. Triphenylphosphane and N-bromosuccinimide were used for the activation of the carboxylic acid and alcohol in the same pot followed by the transfer of sulfur from tetrathiomolybdate. Thioesters were obtained in good to moderate yields. Primary alcohols show excellent reactivity and gave good yields of the corresponding thioesters, whereas secondary alcohols gave moderate yields and tertiary alcohols were very less reactive and gave poor yields of the corresponding thioesters.
Resumo:
In this work, we explore simultaneous geometry design and material selection for statically determinate trusses by posing it as a continuous optimization problem. The underlying principles of our approach are structural optimization and Ashby’s procedure for material selection from a database. For simplicity and ease of initial implementation, only static loads are considered in this work with the intent of maximum stiffness, minimum weight/cost, and safety against failure. Safety of tensile and compression members in the truss is treated differently to prevent yield and buckling failures, respectively. Geometry variables such as lengths and orientations of members are taken to be the design variables in an assumed layout. Areas of cross-section of the members are determined to satisfy the failure constraints in each member. Along the lines of Ashby’s material indices, a new design index is derived for trusses. The design index helps in choosing the most suitable material for any geometry of the truss. Using the design index, both the design space and the material database are searched simultaneously using gradient-based optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous, although the material selection from a database is an inherently discrete problem. A few illustrative examples are included. It is observed that the method is capable of determining the optimal topology in addition to optimal geometry when the assumed layout contains more links than are necessary for optimality.
Resumo:
Nuclear Overhauser effect (NOE) studies of the symmetrical cystine peptides (Formula: see text) (n = 1-3) in dimethylsulfoxide, have resulted in the simultaneous observation of both positive and negative NOEs. Positive NOEs are observed on the Trp C2H and C4H protons of the indole ring upon irradiation of Trp C alpha H and C beta H2 resonances in the peptides where n = 1 and 2. Negative NOEs are observed between backbone NH and C alpha H protons. The magnitudes of the observed NOEs are sensitive to changes in molecular size and solvent viscosity. The results demonstrate that NOEs may be a useful probe of sidechain segmental motion in oligopeptides.
Resumo:
The unsteady laminar free convection boundary layer flows around two-dimensional and axisymmetric bodies placed in an ambient fluid of infinite extent have been studied when the flow is driven by thermal buoyancy forces and buoyancy forces from species diffusion. The unsteadiness in the flow field is caused by both temperature and concentration at the wall which vary arbitrarily with time. The coupled nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. Computations have been performed for a circular cylinder and a sphere. The skin friction, heat transfer and mass transfer are strongly dependent on the variation of the wall temperature and concentration with time. Also the skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist and oppose, respectively, the thermal buoyancy force, whereas the mass transfer rate is higher for small values of the ratio of the buoyancy parameters than for large values. The local heat and mass transfer rates are maximum at the stagnation point and they decrease progressively with increase of the angular position from the stagnation point.
Resumo:
This paper presents a glowworm metaphor based distributed algorithm that enables a collection of minimalist mobile robots to split into subgroups, exhibit simultaneous taxis-behavior towards, and rendezvous at multiple radiation sources such as nuclear/hazardous chemical spills and fire-origins in a fire calamity. The algorithm is based on a glowworm swarm optimization (GSO) technique that finds multiple optima of multimodal functions. The algorithm is in the same spirit as the ant-colony optimization (ACO) algorithms, but with several significant differences. The agents in the glowworm algorithm carry a luminescence quantity called luciferin along with them. Agents are thought of as glowworms that emit a light whose intensity is proportional to the associated luciferin. The key feature that is responsible for the working of the algorithm is the use of an adaptive local-decision domain, which we use effectively to detect the multiple source locations of interest. The glowworms have a finite sensor range which defines a hard limit on the local-decision domain used to compute their movements. Extensive simulations validate the feasibility of applying the glowworm algorithm to the problem of multiple source localization. We build four wheeled robots called glowworms to conduct our experiments. We use a preliminary experiment to demonstrate the basic behavioral primitives that enable each glowworm to exhibit taxis behavior towards source locations and later demonstrate a sound localization task using a set of four glowworms.
Resumo:
Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.
Resumo:
Strain and temperature sensitivities of a type I Bragg grating inscribed in a germania doped silica fiber, fabricated under normal conditions and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition. The results obtained reveal that the strain and temperature sensitivities of the two gratings are different. Based on these results, we demonstrate a technique which enables discrimination of strain and temperature in a Fiber Bragg Grating (FBG) with a linear response. The present technique allows for an easy implementation of the sensor by providing a direct access to the grating region in the fiber and demands only a simple interrogation system.