130 resultados para Silicon Carbide
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new model of ignition in an ignitron, based on the electrical breakdown of the junction between the ignitor (semiconductor) and the mercury (metal) is proposed. A method of evaluating some of the ignition characteristics is also developed. The paper gives a critical summary of the various characteristics of the ignition process. The new model is stated and used to explain all the ignition characteristics. The experiments conducted in support of the various aspects of this model are also given.
Resumo:
Formation of silicon carbide in the Acheson process was studied using a mass transfer model which has been developed in this study. The century old Acheson process is still used for the mass production of silicon carbide. A heat resistance furnace is used in the Acheson process which uses sand and petroleum coke as major raw materials.: It is a highly energy intensive process. No mass transfer model is available for this process. Therefore, a mass transfer model has been developed to study the mass transfer aspects of the process along with heat transfer. The reaction kinetics of silicon carbide formation has been taken from the literature. It has been shown that reaction kinetics has a reasonable influence on the process efficiency. The effect of various parameters on the process such as total gas pressure, presence of silicon carbide in the initial charge, etc. has been studied. A graphical user interface has also been developed for the Acheson process to make the computer code user friendly.
Resumo:
The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.
Resumo:
Single crystals of tin oxide have been grown under conditions obtained in oil fired porcelain tunnel kilns. It was noted that the reducing conditions in the kilns help in the growth of SnO2 crystals at much lower temperatures (1300°C). The growth seems to more pronounced in presence of silicon carbide. The crystals grow as long fibres of 0.1 to 0.5 mm dia. and 10 to 50 mm length. The crystals exhibit rutile structure and the direction of growth seems to be favoured in any one of the major axes a and c.
Resumo:
A simple triggered vacuum gap has previously been described by the authors in this journal (see ibid., vol.5, 415, 1972). Further studies have resulted in improvement of the performance with regard to sensitivity and consistency of the trigger characteristics and immunity from bridging due to metal particles eroded from the arc. The earlier design suffered from rather frequent bridging of the auxiliary gap and showed rather wide scatter in its trigger characteristics. In the present design thermally stable materials like fused quartz, machinable ceramic 'Supramica 500' (Mycalex Corporation of America), lead titanate, barium titanate (LCC HTD) and silicon carbide have been used to insulate the trigger electrode from the cathode. Consistent triggerings free from bridging, at relatively low voltages of 200-400 V have been obtained.
Resumo:
Firing delays of a simple triggered vacuum gap are reported in this paper. The effects of insulating materials in the auxiliary gap, auxiliary gap current, main gap current and electrode separation on the delay have been investigated. The presence of insulating material in the auxiliary gap having low auxiliary gap resistance appears to exhibit large delay. Delay decreases considerably with increase of current in the auxiliary and the main gaps, but it increases with increase of electrode separation. The scatter in the delay is less than 25 ps and 500 ps with supramica (Mycalex Corporation of America) and silicon carbide respectively at lower values of auxiliary gap current and it becomes negligible for supramica at auxiliary gap currents greater than 6A. This investigation appears to indicate that the simple device can be used as a fast switch.
Resumo:
Low-voltage and high-current switching delay characteristics of a simple triggered vacuum gap (TVG) are described using lead zirconate titanate as the dielectric material in the auxiliary gap. This TVG has superior performance at high currents (up to 14 kA was studied) with regard to delay, reliable firing and extended life as compared to the one using either supramica or silicon carbide. The total delay consists of three intervals: to break down the auxiliary gap, to propagate the trigger plasma and to break down the main gap. The data on the influence of the various parameters like the trigger voltage, current, energy and the main circuit energy are given. It has been found that the delay due to the first two intervals is small compared to the third.
Resumo:
In this experimental study, the dry sliding wear and two-body abrasive wear behaviour of graphite filled carbon fabric reinforced epoxy composites were investigated. Carbon fabric reinforced epoxy composite was used as a reference material. Sliding wear experiments were conducted using a pin-on-disc wear tester under dry contact condition. Mass loss was determined as a function of sliding velocity for loads of 25, 50, 75, and 100 N at a constant sliding distance of 6000 m. Two-body abrasive wear experiments were performed under multi-pass condition using silicon carbide (SiC) of 150 and 320 grit abrasive papers. The effects of abrading distance and different loads have been studied. Abrasive wear volume and specific wear rate as a function of applied normal load and abrading distance were also determined. The results show that in dry sliding wear situations, for increased load and sliding velocity, higher wear loss was recorded. The excellent wear characteristics were obtained with carbon-epoxy containing graphite as filler. Especially, 10 wt.% of graphite in carbon-epoxy gave a low wear rate. A graphite surface film formed on the counterface was confirmed to be effective in improving the wear characteristics of graphite filled carbon-epoxy composites. In case of two-body abrasive wear, the wear volume increases with increasing load/abrading distance. Experimental results showed the type of counterface (hardened steel disc and SiC paper) material greatly influences the wear behaviour of the composites. Wear mechanisms of the composites were investigated using scanning electron microscopy. Wear of carbon-epoxy composite was found to be mainly due to a microcracking and fiber fracture mechanisms. It was found that the microcracking mechanism had been caused by progressive surface damage. Further, it was also noticed that carbon-epoxy composite wear is reduced to a greater extent by addition of the graphite filler, in which wear was dominated by microplowing/microcutting mechanisms instead of microcracking.
Resumo:
Aluminium alloy (A356)-SiC composites containing 15 and 25 wt.% silicon carbide particles (average size 43 μm) were tested for sliding wear at different loads using a pin on disc machine. Composites exhibited better wear resistance compared with unreinforced alloy up to a pressure of 26 MPa. Scanning electron microscopy examination of worn surfaces and subsurfaces show that the presence of dispersed SiC particles help in reducing the propensity of material flow at the surface, at the same time leading to the formation of an iron-rich layer on the surface.
Resumo:
The constitutive flow behavior of a metal matrix composite (MMC) with 2124 aluminum containing 20 vol pct silicon carbide particulates under hot-working conditions in the temperature range of 300 °C to 550 °C and strain-rate range of 0.001 to 1 s-1 has been studied using hot compression testing. Processing maps depicting the variation of the efficiency of power dissipation given by [2m/(m + 1)] (wherem is the strain-rate sensitivity of flow stress) with temperature and strain rate have been established for the MMC as well as for the matrix material. The maps have been interpreted on the basis of the Dynamic Materials Model (DMM). [3] The MMC exhibited a domain of superplasticity in the temperature range of 450 °C to 550 °C and at strain rates less than 0.1 s-1. At 500 °C and 1 s-1 strain rate, the MMC undergoes dynamic recrystallization (DRX), resulting in a reconstitution of microstructure. In comparison with the map for the matrix material, the DRX domain occurred at a strain rate higher by three orders of magnitude. At temperatures lower than 400 °C, the MMC exhibited dynamic recovery, while at 550 °C and 1 s-1, cracking occurred at the prior particle boundaries (representing surfaces of the initial powder particles). The optimum temperature and strain-rate combination for billet conditioning of the MMC is 500 °C and 1 s-1, while secondary metalworking may be done in the super- plasticity domain. The MMC undergoes microstructural instability at temperatures lower than 400 °C and strain rates higher than 0.1 s-1.
Resumo:
Titanium flats were scribed by silicon carbide wedges over ranges of temperatures and applied strains and with lubrication. The response of the material to scribing was noted by recording the coefficient of friction, the surface morphology of track and the subsurface deformation. Additional data were obtained from (1) uniaxial compression of titanium, (2) scribing of oxygen-free high conductivity copper and (3) scribing of aluminium under dry and lubricated conditions to analyse and explain the observed variation in response of titanium to scribing with strain, temperature and lubrication.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.
Resumo:
In situ formations of Al2O3 + ZrO2 + SiCW ternary composite powders have been obtained by carbothermal reduction of a mixture of Sillimanite. Kaolin and Zircon using two different carbon sources. Products formed were mixtures of alumina and zirconia along with silicon carbide in the form of whiskers. The effects of composition of the reactants, the role of fineness of the starting precursors and the nature of the carbon Source on the final product powder obtained are presented. XRD and SEM analyses indicate complete reaction of the precursors to yield Al2O3 + ZrO2 + SiCW as product powders, with the SiC having whisker morphology. It is also seen that zirconia could be stabilised to some extent in the tetragonal form without any stabilising agent by tailoring the starting materials and their composition. (C) 2002 Published by Elsevier Science B.V.
Resumo:
The firing characteristics of the simple triggered vacuum gap (TVG) using lead zirconate titanate as dielectric material in the triggered gap are described. This TVG has a long life of about 2000 firings without appreciable deterioration of the electrical properties for main discharge currents upto 3 kA and is much superior to these made with Supramica (Mycalex Corporation of America) and silicon carbide as used in our earlier investigations. The effects of the variation of trigger voltage, trigger curcit, trigger pulse duration, trigger pulse energy, main gap voltage, main gap separation and main circuit energy on the firing characteristics have been studied. Trigger resistance progressively decreases with the number of firings of the trigger gap and as well as of the main gap. This decrease in the trigger resistance is more pronounced for main discharge currents exceeding 10 kA. The minimum trigger current required for reliable firing decreases with increase of trigger voltage upto a threshold value of 1.2 kV and there-onwards saturates at 3.0 A. This value is less than that obtained with Supramica as dielectric material. One hundred percent firing probability of the TVG at main gap voltages as low as 50 V is possible and this low voltage breakdown of the main gap appears to be similar to the breakdown at low pressures between moving plasma by other workers. and the cold electrodes immersed in it, as reported.