13 resultados para Side Vehicle-to-Vehicle Impact Tests.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The primary objective of the present study is to show that for the most common configuration of an impactor system, the accelerometer cannot exactly reproduce the dynamic response of a specimen subjected to impact loading. An equivalent Lumped Parameter Model (LPM) of the given impactor set-up has been formulated for assessing the accuracy of an accelerometer mounted in a drop-weight impactor set-up for an axially loaded specimen. A specimen under the impact loading is represented by a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. Specimens made of steel, aluminium and fibre-reinforced composite (FRC) are used in the present study. Assuming the force-displacement response obtained in an actual impact test to be the true behaviour of the test specimen, a suitable numerical approach has been used to solve the governing non-linear differential equations of a three degrees-of-freedom (DOF) system in a piece-wise linear manner. The numerical solution of the governing differential equations following an explicit time integration scheme yields an excellent reproduction of the mechanical behaviour of the specimen, consequently confirming the accuracy of the numerical approach. However, the spring representing the accelerometer predicts a response that qualitatively matches the assumed force-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.
Resumo:
This article deals with a simulation-based Study of the impact of projectiles on thin aluminium plates using LS-DYNA by modelling plates with shell elements and projectiles with solid elements. In order to establish the required modelling criterion in terms of element size for aluminium plates, a convergence Study of residual velocity has been carried Out by varying mesh density in the impact zone. Using the preferred material and meshing criteria arrived at here, extremely good prediction of test residual velocities and ballistic limits given by Gupta et al. (2001) for thin aluminium plates has been obtained. The simulation-based pattern of failure with localized bulging and jagged edge of perforation is similar to the perforation with petalling seen in tests. A number Of simulation-based parametric studies have been carried out and results consistent with published test data have been obtained. Despite the robust correlation achieved against published experimental results, it would be prudent to conduct one's own experiments, for a final correlation via the present modelling procedure and analysis with the explicit LS-DYNTA 970 solver. Hence, a sophisticated ballistic impact testing facility and a high-speed camera have been used to conduct additional tests on grade 1100 aluminium plates of 1 mm thickness with projectiles Of four different nose shapes. Finally, using the developed numerical simulation procedure, an excellent correlation of residual velocity and failure modes with the corresponding test results has been obtained.
Resumo:
This paper deals with the simulation-driven study of the impact of hardened steel projectiles on thin aluminium target plates using explicit finite element analysis as implemented in LS-DYNA. The evaluation of finite element modelling includes a comprehensive mesh convergence study using shell elements for representing target plates and the solid element-based representation of ogivalnosed projectiles. A user-friendly automatic contact detection algorithm is used for capturing interaction between the projectile and the target plate. It is shown that the proper choice of mesh density and strain rate-dependent material properties is crucial as these parameters significantly affect the computed residual velocity. The efficacy of correlation with experimental data is adjudged in terms of a 'correlation index' defined in the present study for which values close to unity are desirable.By simulating laboratory impact tests on thin aluminium plates carried out by earlier investigators, extremely good prediction of experimental ballistic limits has been observed with correlation indices approaching unity. Additional simulation-based parametric studies have been carried out and results consistent with test data have been obtained. The simulation procedures followed in the present study can be applied with confidence in designing thin aluminium armour plates for protection against low calibre projectiles.
Resumo:
Adhesive interaction between impacting bodies can cause energy loss, even in an otherwise elastic impact. Adhesion force induces tensile stress in the bodies, which modifies the stress wave profile and influences the restitution behavior. We investigate this effect by developing a finite element framework, which incorporates a Lennard-Jones-type potential for modeling the adhesive interaction between volume elements. With this framework, the classical problems in contact mechanics can be revisited without the restrictive surface-force approximation. In this paper, we study the longitudinal impact of an elastic cylinder on a rigid half-space with adhesion. In the absence of adhesion, this problem reduces to the impact between two identical cylinders in which there is no energy loss. Adhesion causes a fraction of energy in the stress waves to remain in the cylinder as residual stress waves. This apparent loss in kinetic energy is shown to be a unique function of maximum tensile strain energy. We have developed a 1-D model in terms of interaction force parameters, velocity and material properties to estimate the tensile stain energy. We show that this model can be used to predict practically important phenomena like capture wherein the impacting bodies stick together. (C) 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
The deformation and fracture response of a bulk metallic glass (BMG) post-annealing above the glass transition temperature is examined. The toughness of the glass-matrix composite exhibits a sharp transition beyond a critical volume fraction of crystallization to values as low as that of brittle silicate glass. Instrumented indentation tests supplemented by impact tests were used to study this ductile to brittle transition exhibited by the partially crystallized samples. Indentation on the anneal-embrittled specimens shows lateral cracks in addition to cracks along the corners. The applicability of the Poisson's ratio-toughness correlation with respect to partially crystallized samples is also investigated.
Resumo:
Spreading and receding processes of water drops impacting on a stainless steel surface comprising rectangular shaped parallel grooves are studied experimentally. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15 - 257. Measurements of spreading drop diameter and drop height were obtained during the impact process as function of time. Experimental measurements of spreading drop diameter and drop height obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.
Resumo:
Tn the current set of investigations foam sandwich panels and some components of an aircraft comprising of two layer Glass Fiber Reinforced Plastic(GFRP) face sheets of thickness 1mm each with polyurethene foam as filler of thickness 8mm were examined for detection of debonds and defects. Known defects were introduced in the panels in the form of teflon insert, full foam removal,half foam removal and edge delamination by inserting a teflon and removing it after curing. Two such panels were subjected to acoustic impact and analysis was carried out in both time and frequency domains. These panels were ultrasonically scanned to obtain C-SCAN images as reference to evaluate Acoustic Impact Test (AIT) results. In addition both Fokker bond testing and AIT(woodpecker) were carried out on the same panels and also some critical joints on the actual component. The results obtained from these tests are presented and discussed in this paper.
Resumo:
Aerosol forcing remains a dominant uncertainty in climate studies. The impact of aerosol direct radiative forcing on Indian monsoon is extremely complex and is strongly dependent on the model, aerosol distribution and characteristics specified in the model, modelling strategy employed as well as on spatial and temporal scales. The present study investigates (i) the aerosol direct radiative forcing impact on mean Indian summer monsoon when a combination of quasi-realistic mean annual cycles of scattering and absorbing aerosols derived from an aerosol transport model constrained with satellite observed Aerosol Optical Depth (AOD) is prescribed, (ii) the dominant feedback mechanism behind the simulated impact of all-aerosol direct radiative forcing on monsoon and (iii) the relative impacts of absorbing and scattering aerosols on mean Indian summer monsoon. We have used CAM3, an atmospheric GCM (AGCM) that has a comprehensive treatment of the aerosol-radiation interaction. This AGCM has been used to perform climate simulations with three different representations of aerosol direct radiative forcing due to the total, scattering aerosols and black carbon aerosols. We have also conducted experiments without any aerosol forcing. Aerosol direct impact due to scattering aerosols causes significant reduction in summer monsoon precipitation over India with a tendency for southward shift of Tropical Convergence Zones (TCZs) over the Indian region. Aerosol forcing reduces surface solar absorption over the primary rainbelt region of India and reduces the surface and lower tropospheric temperatures. Concurrent warming of the lower atmosphere over the warm oceanic region in the south reduces the land-ocean temperature contrast and weakens the monsoon overturning circulation and the advection of moisture into the landmass. This increases atmospheric convective stability, and decreases convection, clouds, precipitation and associated latent heat release. Our analysis reveals a defining negative moisture-advection feedback that acts as an internal damping mechanism spinning down the regional hydrological cycle and leading to significant circulation changes in response to external radiative forcing perturbations. When total aerosol loading (both absorbing and scattering aerosols) is prescribed, dust and black carbon aerosols are found to cause significant atmospheric heating over the monsoon region but the aerosol-induced weakening of meridional lower tropospheric temperature gradient (leading to weaker summer monsoon rainfall) more than offsets the increase in summer-time rainfall resulting from the atmospheric heating effect of absorbing aerosols, leading to a net decrease of summer monsoon rainfall. Further, we have carried out climate simulations with globally constant AODs and also with the constant AODs over the extended Indian region replaced by realistic AODs. Regional aerosol radiative forcing perturbations over the Indian region is found to have impact not only over the region of loading but over remote tropical regions as well. This warrants the need to prescribe realistic aerosol properties in strategic regions such as India in order to accurately assess the aerosol impact.
Resumo:
Before installation, a voltage source converter is usually subjected to heat-run test to verify its thermal design and performance under load. For heat-run test, the converter needs to be operated at rated voltage and rated current for a substantial length of time. Hence, such tests consume huge amount of energy in case of high-power converters. Also, the capacities of the source and loads available in the research and development (R&D) centre or the production facility could be inadequate to conduct such tests. This paper proposes a method to conduct heat-run tests on high-power, pulse width modulated (PWM) converters with low energy consumption. The experimental set-up consists of the converter under test and another converter (of similar or higher rating), both connected in parallel on the ac side and open on the dc side. Vector-control or synchronous reference frame control is employed to control the converters such that one draws certain amount of reactive power and the other supplies the same; only the system losses are drawn from the mains. The performance of the controller is validated through simulation and experiments. Experimental results, pertaining to heat-run tests on a high-power PWM converter, are presented at power levels of 25 kVA to 150 kVA.
Resumo:
The way nanostructures behave and mechanically respond to high impact collision is a topic of intrigue. For anisotropic nanostructures, such as carbon nanotubes, this response will be complicated based on the impact geometry. Here we report the result of hypervelocity impact of nanotubes against solid targets and show that impact produces a large number of defects in the nanotubes, as well as rapid atom evaporation, leading to their unzipping along the nanotube axis. Fully atomistic reactive molecular dynamics simulations are used to gain further insights of the pathways and deformation and fracture mechanisms of nanotubes under high energy mechanical impact. Carbon nanotubes have been unzipped into graphene nanoribbons before using chemical treatments but here the instability of nanotubes against formation, fracture, and unzipping is revealed purely through mechanical impact. defect
Resumo:
The problem of intercepting a maneuvering target at a prespecified impact angle is posed in nonlinear zero-sum differential games framework. A feedback form solution is proposed by extending state-dependent Riccati equation method to nonlinear zero-sum differential games. An analytic solution is obtained for the state-dependent Riccati equation corresponding to the impact-angle-constrained guidance problem. The impact-angle-constrained guidance law is derived using the states line-of-sight rate and projected terminal impact angle error. Local asymptotic stability conditions for the closed-loop system corresponding to these states are studied. Time-to-go estimation is not explicitly required to derive and implement the proposed guidance law. Performance of the proposed guidance law is validated using two-dimensional simulation of the relative nonlinear kinematics as well as a thrust-driven realistic interceptor model.
Resumo:
Small angle x-ray scattering (SAXS) in a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of pi-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in a fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of the PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the lp is much shorter.