11 resultados para Short-term generation scheduling
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.
Resumo:
Among the various amines administered to excisedCucumis sativus cotyledons in short-term organ culture, agmatine (AGM) inhibited arginine decarboxylase (ADC) activity to around 50%, and putrescine was the most potent entity in this regard. Homoarginine (HARG) dramatically stimulated (3- to 4-fold) the enzyme activity. Both AGM inhibition and HARG stimulation of ADC were transient, the maximum response being elicited at 12 h of culture. Mixing experiments ruled out involvement of a macromolecular effector in the observed modulation of ADC. HARG-stimulated ADC activity was completely abolished by cycloheximide, whereas AGM-mediated inhibition was unaffected. Half-life of the enzyme did not alter on treatment with either HARG or AGM. The observed alterations in ADC activity are accompanied by change in Km of the enzyme. HARG-stimulated ADC activity is additive to that induced by benzyladenine (BA) whereas in presence of KCl, HARG failed to enhance ADC activity, thus demonstrating the overriding influence of K+ on amine metabolism.
Resumo:
Recently, it was found that a reduction in atmospheric CO2 concentration leads to a temporary increase in global precipitation. We use the Hadley Center coupled atmosphere-ocean model, HadCM3L, to demonstrate that this precipitation increase is a consequence of precipitation sensitivity to changes in atmospheric CO2 concentrations through fast tropospheric adjustment processes. Slow ocean cooling explains the longer-term decrease in precipitation. Increased CO2 tends to suppress evaporation/precipitation whereas increased temperatures tend to increase evaporation/precipitation. When the enhanced CO2 forcing is removed, global precipitation increases temporarily, but this increase is not observed when a similar negative radiative forcing is applied as a reduction of solar intensity. Therefore, transient precipitation increase following a reduction in CO2-radiative forcing is a consequence of the specific character of CO2 forcing and is not a general feature associated with decreases in radiative forcing. Citation: Cao, L., G. Bala, and K. Caldeira (2011), Why is there a short-term increase in global precipitation in response to diminished CO2 forcing?, Geophys. Res. Lett., 38, L06703, doi:10.1029/2011GL046713.
Resumo:
Production scheduling in a flexible manufacturing system (FMS) is a real-time combinatorial optimization problem that has been proved to be NP-complete. Solving this problem needs on-line monitoring of plan execution and requires real-time decision-making in selecting alternative routings, assigning required resources, and rescheduling when failures occur in the system. Expert systems provide a natural framework for solving this kind of NP-complete problems.In this paper an expert system with a novel parallel heuristic approach is implemented for automatic short-term dynamic scheduling of FMS. The principal features of the expert system presented in this paper include easy rescheduling, on-line plan execution, load balancing, an on-line garbage collection process, and the use of advanced knowledge representational schemes. Its effectiveness is demonstrated with two examples.
Resumo:
Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.
Resumo:
This case study has been carried out as a comparison between two different land-use strategies for climate change mitigation, with possible application within the Clean Development Mechanisms. The benefits of afforestation for carbon sequestration versus for bioenergy production are compared in the context of development planning to meet increasing domestic and agricultural demand for electricity in Hosahalli village, Karnataka, India. One option is to increase the local biomass based electricity generation, requiring an increased biomass plantation area. This option is compared with fossil based electricity generation where the area is instead used for producing wood for non-energy purposes while also sequestering carbon in the soil and standing biomass. The different options have been assessed using the PRO-COMAP model. The ranking of the different options varies depending on the system boundaries and time period. Results indicate that, in the short term (30 years) perspective, the mitigation potential of the long rotation plantation is largest, followed by the short rotation plantation delivering wood for energy. The bioenergy option is however preferred if a long-term view is taken. Short rotation forests delivering wood for short-lived non-energy products have the smallest mitigation potential, unless a large share of the wood products are used for energy purposes (replacing fossil fuels) after having served their initial purpose. If managed in a sustainable manner all of these strategies can contribute to the improvement of the social and environmental situation of the local community. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Road transportation, as an important requirement of modern society, is presently hindered by restrictions in emission legislations as well as the availability of petroleum fuels, and as a consequence, the fuel cost. For nearly 270 years, we burned our fossil cache and have come to within a generation of exhausting the liquid part of it. Besides, to reduce the greenhouse gases, and to obey the environmental laws of most countries, it would be necessary to replace a significant number of the petroleum-fueled internal-combustion-engine vehicles (ICEVs) with electric cars in the near future. In this article, we briefly describe the merits and demerits of various proposed electrochemical systems for electric cars, namely the storage batteries, fuel cells and electrochemical supercapacitors, and determine the power and energy requirements of a modern car. We conclude that a viable electric car could be operated with a 50 kW polymer-electrolyte fuel cell stack to provide power for cruising and climbing, coupled in parallel with a 30 kW supercapacitor and/or battery bank to deliver additional short-term burst-power during acceleration.
Resumo:
Spectral efficiency is a key characteristic of cellular communications systems, as it quantifies how well the scarce spectrum resource is utilized. It is influenced by the scheduling algorithm as well as the signal and interference statistics, which, in turn, depend on the propagation characteristics. In this paper we derive analytical expressions for the short-term and long-term channel-averaged spectral efficiencies of the round robin, greedy Max-SINR, and proportional fair schedulers, which are popular and cover a wide range of system performance and fairness trade-offs. A unified spectral efficiency analysis is developed to highlight the differences among these schedulers. The analysis is different from previous work in the literature in the following aspects: (i) it does not assume the co-channel interferers to be identically distributed, as is typical in realistic cellular layouts, (ii) it avoids the loose spectral efficiency bounds used in the literature, which only considered the worst case and best case locations of identical co-channel interferers, (iii) it explicitly includes the effect of multi-tier interferers in the cellular layout and uses a more accurate model for handling the total co-channel interference, and (iv) it captures the impact of using small modulation constellation sizes, which are typical of cellular standards. The analytical results are verified using extensive Monte Carlo simulations.
Resumo:
Earlier studies in this laboratory have shown the potential of artemisinin-curcumin combination therapy in experimental malaria. In a parasite recrudescence model in mice infected with Plasmodium berghei (ANKA), a single dose of alpha, beta-arteether (ART) with three oral doses of curcumin prevented recrudescence, providing almost 95% protection. The parasites were completely cleared in blood with ART-alone (AE) or ART+curcumin (AC) treatments in the short-term, although the clearance was faster in the latter case involving increased ROS generation. But, parasites in liver and spleen were not cleared in AE or AC treatments, perhaps, serving as a reservoir for recrudescence. Parasitemia in blood reached up to 60% in AE-treated mice during the recrudescence phase, leading to death of animals. A transient increase of up to 2-3% parasitemia was observed in AC-treatment, leading to protection and reversal of splenomegaly. A striking increase in spleen mRNA levels for TLR2, IL-10 and IgG-subclass antibodies but a decrease in those for INF gamma and IL-12 was observed in AC-treatment. There was a striking increase in IL-10 and IgG subclass antibody levels but a decrease in INF gamma levels in sera leading to protection against recrudescence. AC-treatment failed to protect against recrudescence in TLR2(-/-) and IL-10(-/-) animals. IL-10 injection to AE-treated wild type mice and AC-treated TLR22/2 mice was able to prolong survival. Blood from the recrudescence phase in AE-treatment, but not from AC-treatment, was able to reinfect and kill naive animals. Sera from the recrudescence phase of AC-treated animals reacted with several parasite proteins compared to that from AE-treated animals. It is proposed that activation of TLR2-mediated innate immune response leading to enhanced IL-10 production and generation of anti-parasite antibodies contribute to protective immunity in AC-treated mice. These results indicate a potential for curcumin-based combination therapy to be tested for prevention of recrudescence in falciparum and relapse in vivax malaria.
Resumo:
In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.