179 resultados para Shear tests

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results from interface shear tests on sand-geosynthetic interfaces are examined in light of surface roughness of the interacting geosynthetic material. Three different types of interface shear tests carried out in the frame of direct shear-test setup are compared to understand the effect of parameters like box fixity and symmetry on the interface shear characteristics. Formation of shear bands close to the interface is visualized in the tests and the bands are analyzed using image-segmentation techniques in MATLAB. A woven geotextile with moderate roughness and a geomembrane with minimal roughness are used in the tests. The effect of surface roughness of the geosynthetic material on the formation of shear bands, movement of sand particles, and interface shear parameters are studied and compared through visual observations, image analyses, and image-segmentation techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper investigates the effect of particle size of sand and the surface asperities of reinforcing material on their interlocking mechanism and its influence on the interfacial shear strength under direct sliding condition. Three sands of different sizes with similar morphological characteristics and four different types of reinforcing materials with different surface features were used in this study. Interface direct shear tests on these materials were performed in a specially developed symmetric loading interface direct shear test setup. Morphological characteristics of sand particles were determined from digital image analysis and the surface roughness of the reinforcing materials was measured using an analytical expression developed for this purpose. Interface direct shear tests at three different normal stresses were carried out by shearing the sand on the reinforcing material fixed to a smooth surface. Test results revealed that the peak interfacial friction and dilation angles are hugely dependent upon the interlocking between the sand particles and the asperities of reinforcing material, which in turn depends on the relative size of sand particles and asperities. Asperity ratio (AS/D-50) of interlocking materials, which is defined as the ratio of asperity spacing of the reinforcing material and the mean particle size of sand was found to govern the interfacial shear strength with highest interfacial strength measured when the asperity ratio was equal to one, which represents the closest fitting of sand particles into the asperities. It was also understood that the surface roughness of the reinforcing material influences the shear strength to an extent, the influence being more pronounced in coarser particles. Shear bands in the interface shear tests were analysed through image segmentation technique and it was observed that the ratio of shear band thickness (t) to the median particle size (D-50) was maximum when the AS/D-50 was equal to one. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper presents a rational approach to model the behavior of bonded soils within the frame work of hardening plasticity. The approach is based on the premise that the resistance of bonded materials is a superposition of the two components of cement bond strength and soil frictional strength and that the deformation of the soil is associated with the frictional component of stresses just as in the case of a remoulded soil, the bonds offering additional resistance at any given strain level. This concept is similar to two stiffnesses acting in parallel for the same strain response. The proposed model considers the constitutive laws separately for the two components (bond and frictional) and adds the two to get the overall response. The unbonded soil component is described by the well known 'modified Cam clay' model. The response of the bond component is also described by a strain softening elasto-plastic model, considering the behavior to be elastic up to the yield surface and elasto-plastic beyond yield surface. To illustrate the capability of the proposed, model some laboratory test results of both compression and-extension shear tests are predicted. Despite the model being simple, several typical features of the behavior of bonded materials are well reproduced. The model parameters are well defined and easily determinable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using small scale model tests, the interference effect on the ultimate bearing capacity of two closely spaced strip footings, placed on the surface of dry sand, was investigated. At any time, the footings were assumed to (1) carry exactly the same magnitude of load; and (2) settle to the same extent. No tilt of the footing was allowed. The effect of clear spacing (s) between two footings was explicitly studied. An interference of footings leads to a significant increase in their bearing capacity; the interference effect becomes even more substantial with an increase in the relative density of sand. The bearing capacity attains a peak magnitude at a certain (critical) spacing between two footings. The experimental observations presented in this technical note were similar to those given by different available theories. However, in a quantitative sense, the difference between the experiments and theories was seen to be still significant and it emphasizes the need of doing a further rigorous analysis in which the effect of stress level on the shear strength parameters of soil mass can be incorporated properly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various field test (namely vibration tests on blocks or plates, steady-state vibration or Rayleigh wave tests, wave propagation tests, and cyclic load tests) were conducted at a number of sites in India to determine the dynamic shear modulus, G. Data obtained at different sites are described. The values of G obtained from the different tests at a given site vary widely. The rational approach for selecting the value of G from field tests for use in the analysis and design of soil-structure interaction problems under dynamic loads must account for the factors affecting G. The suggested approach, which provides a possible answer, is suitable in cohesionless soils below the water table where it is rather difficult, if not impossible, to obtain undisturbed samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using the bender and extender elements tests, together with measurements of the travel times of shear (S) and primary (P) waves, the variation of Poisson ratio (nu) was determined for dry sands with respect to changes in relative densities and effective confining pressures (sigma(3)). The tests were performed for three different ranges of particle sizes. The magnitude of the Poisson ratio decreases invariably with an increase in both the relative density and the effective confining pressure. The effect of the confining pressure on the Poisson ratio was found to become relatively more significant for fine-grained sand as compared with the coarse-grained sand. For a given material, at a particular value of sigma(3), the magnitude of the Poisson ratio decreases, almost in a linear fashion, with an increase in the value of maximum shear modulus (G(max)). The two widely used correlations in literature, providing the relationships among G(max), void ratio (e) and effective confining pressure (sigma(3)), applicable for angular granular materials, were found to compare reasonably well with the present experimental data for the fine- and medium-grained sands. However, for the coarse-grained sand, these correlations tend to overestimate the values of G(max).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a biquadratic Lagrangian plate bending element with consistent fields for the constrained transverse shear strain functions. A technique involving expansion of the strain interpolations in terms of Legendre polynomials is used to redistribute the kinematically derived shear strain fields so that the field-consistent forms (i.e. avoiding locking) are also variationally correct (i.e. do not violate the variational norms). Also, a rational method of isoparametric Jacobian transformation is incorporated so that the constrained covariant shear strain fields are always consistent in whatever general quadrilateral form the element may take. Finally the element is compared with another formulation which was recently published. The element is subjected to several robust bench mark tests and is found to pass all the tests efficiently.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

E glass epoxy laminates of thicknesses in the range 2-5 mm were subjected to repeated impacts. For each thickness the number of hits to cause tup penetration was determined and the value of this number was higher the larger the thickness of the laminate tested. The C-scan, before and after impact, was done to obtain information regarding flaw distribution. Short beam shear test samples were made from locations at fixed distances from impact point and tested. The samples closer to the zone of impact showed lower strength values. Scanning fractography revealed shear deformation features for these samples and brittle fracture features for the region near the zone of impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subsurface lithology and seismic site classification of Lucknow urban center located in the central part of the Indo-Gangetic Basin (IGB) are presented based on detailed shallow subsurface investigations and borehole analysis. These are done by carrying out 47 seismic surface wave tests using multichannel analysis of surface waves (MASW) and 23 boreholes drilled up to 30 m with standard penetration test (SPT) N values. Subsurface lithology profiles drawn from the drilled boreholes show low- to medium-compressibility clay and silty to poorly graded sand available till depth of 30 m. In addition, deeper boreholes (depth >150 m) were collected from the Lucknow Jal Nigam (Water Corporation), Government of Uttar Pradesh to understand deeper subsoil stratification. Deeper boreholes in this paper refer to those with depth over 150 m. These reports show the presence of clay mix with sand and Kankar at some locations till a depth of 150 m, followed by layers of sand, clay, and Kankar up to 400 m. Based on the available details, shallow and deeper cross-sections through Lucknow are presented. Shear wave velocity (SWV) and N-SPT values were measured for the study area using MASW and SPT testing. Measured SWV and N-SPT values for the same locations were found to be comparable. These values were used to estimate 30 m average values of N-SPT (N-30) and SWV (V-s(30)) for seismic site classification of the study area as per the National Earthquake Hazards Reduction Program (NEHRP) soil classification system. Based on the NEHRP classification, the entire study area is classified into site class C and D based on V-s(30) and site class D and E based on N-30. The issue of larger amplification during future seismic events is highlighted for a major part of the study area which comes under site class D and E. Also, the mismatch of site classes based on N-30 and V-s(30) raises the question of the suitability of the NEHRP classification system for the study region. Further, 17 sets of SPT and SWV data are used to develop a correlation between N-SPT and SWV. This represents a first attempt of seismic site classification and correlation between N-SPT and SWV in the Indo-Gangetic Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M (w) > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V (s)) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V (s) profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V (s)30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V (s)30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V (s) and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as `V (s)' is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V (s) profiles of the study area for site response studies.