18 resultados para Shear strength properties

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of allophane minerals imparts special engineering features to the volcanic ash soils. This study examines the reasons for the allophanic soils exhibiting unusual shear strength properties in comparison to sedimentary clays. The theories of residual shear strength developed for natural soils and artificial soil mixtures and the unusual surface charge properties of the allophane particle are invoked to explain the high shear strength values of these residual soils. The lack of any reasonable correlation between phi' (effective stress-strength parameter) and plasticity index values for allophanic soils is explained on the basis of the unusual structure of the allophane particle. The reasons as to why natural soil slopes in allophanic soil areas (example, Dominica, West Indies) are stable at much steeper angles than natural slopes in sedimentary clay deposits (London clay areas) are explained in light of the hypothesis developed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strength and stiffness properties of municipal solid waste (MSW) are important in landfill design. This paper presents the results of comprehensive testing of shear strength properties of mechanically biologically treated municipal solid waste (MBT-MSW) in laboratory. Changes in shear strength of MSW as a function of unit weight and particle size were investigated by performing laboratory studies on the MSW collected from Mavallipura landfill site in Bangalore. Direct shear tests, small scale and large scale consolidated undrained and drained triaxial tests were conducted on reconstituted compost reject MSW samples. The triaxial test results showed that the MSW samples exhibited a strain-hardening behaviour and the strength of MSW increased with increase in unit weight. Consolidated drained tests showed that the mobilized shear strength of the MSW increased by 40% for a unit weight increase from 7.3 kN/m(3) to 10.3 kN/m(3) at 20% strain levels. The mobilized cohesion and friction angle ranged from 5 to 9 kPa and 8 degrees to 33 degrees corresponding to a strain level of 20%. The consolidated undrained tests exhibited reduced friction angle values compared to the consolidated drained tests. The friction angle increased with increase in the unit weight from 8 degrees to 55 degrees in the consolidated undrained tests. Minor variations were found in the cohesion values. Relationships for strength and stiffness of MSW in terms of strength and stiffness ratios are developed and discussed. The stiffness ratio and the strength ratio of MSW were found to be 10 and 0.43. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein are reported the results of an investigation on the effective angle of interfacial friction between fine-grained soils and solid surfaces as influenced by the roughness of the material surface, the soil type and the overconsolidation ratio. The ratio of interfacial friction angle to the angle of internal friction (evaluated at constant overconsolidation ratio) of the soil is independent of the overconsolidation ratio. An empirical correlation between this ratio and the roughness of the interface has been proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of an experimental study on punching shear strength and behaviour of reinforced concrete corner column connections in flat slabs; a quasi-empirical method is proposed for computing the punching shear strength. The method has also been extended for punching shear strength prediction at interior and edge column connections. The test results compare better with the strengths predicted by the proposed method than those by Ingvarson, Zaglool and Pollet available in the literature. Further, the experimental strengths of interior, edge and corner column connections have been compared with the strengths predicted by the proposed method and the two codes of practice, viz. ACI and BS code, to demonstrate the usefulness of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32-34 times that at the liquid limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The undrained shear strength of remoulded soils is of great concern in geotechnical engineering applications. This study aims to develop a reliable approach for determining the undrained shear strength of remoulded fine-grained soils, through the use of index test results, at both the plastic and semi-solid states of consistency. Experimental investigation and subsequent analysis involving a number of fine-grained soils of widely varying plasticity and geological origin have led to a two-parameter linear model of the relationship between logarithm of remoulded undrained shear strength and liquidity index. The numerical values of the parameters are found to be dependent to a lesser extent on the soil group and to a greater extent on the soil state. Based on the values of regression coefficient, ranking index and ranking distance, it seems that the relationship represents the experimental results well. It may be pointed out that the possibility of such a relationship in the semi-solid state of a soil has not been explored in the past. It is also shown that the shear strength at the plastic limit is about 32–34 times that at the liquid limit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present discussion tries to bring out the importance of clay mineralogical composition of fine-grained soils on their liquid limit behaviour. It reinforces the author's observation that the undrained shear strengths at liquid limit water content and at plastic limit water content are not unique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triaxial tests are essential to estimate the shear strength properties of the soil or rock. Normally triaxial tests are carried out on samples of 38 mm diameter and 76 mm height. Granular materials, predominantly used in base/sub-base construction of pavements or in railways have size range of 60-75 mm. Determination of shear strength parameters of those materials can be made possible only through triaxial tests on large diameter samples. This paper describes a large diameter cyclic triaxial testing facility set up in the Geotechnical Engineering lab of Indian Institute of Science. This setup consists of 100 kN capacity dynamic loading frame, which facilitates testing of samples of up to 300 mm diameter and 600 mm height. The loading ram can be actuated up to a maximum frequency of 10 Hz, with maximum amplitude of 100 mm. The setup is capable of carrying out static as well as dynamic triaxial tests under isotropic, anisotropic conditions with a maximum confining pressure of 1 MPa. Working with this setup is a difficult task because of the size of the sample. In this paper, a detailed discussion on the various problems encountered during the initial testing using the equipment, the ideas and solutions adopted to solve them are presented. Pilot experiments on granular sub-base material of 53 mm down size are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the Greater Cochin area, which is undergoing rapid industrialisation, consists of extremely soft marine clay calling for expensive deep foundations. This paper presents a study on the physical properties and engeering characteristics of Cochin marine clays. These marine clays are characterised by high Atterberg limits and natural water contents. They are moderately sensitive with liquidity indices ranging over 0.46 to 0.87.The grain size distribution shows almost equal fractions of clay and silt size with sand content varying around 20%. Use of a dispersing agent in carrying out grain size distribution test plays an important role. The fabric of these clays had been identified as flocculant. The pore water has low salinity which results in marginal changes in properties on washing.Consolidation test results showed a preconsolidation pressure of up to about 0.5 kg/cm2 with high compression indices. Compression index vs liquid limit yielded a correlation comparable to that of published data. The undisturbed samples have a much larger coefficient of secondary consolidation as a result of flocculant fabric. These clays have very low undrained shear strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reported presence in marine clays and the recognized role of polysaccharide as a bonding agent provided the motivation to examine the role of starch polysaccharide in the remoulded properties of nonswelling (kaolinite) and swelling (bentonite) groups of clays. The starch polysaccharide belongs to a group of naturally occurring, large-sized organic molecules (termed polymers) and is built up by extensive repetition of simple chemical units called repeat units. The results of the study indicate that the impact of the starch polysaccharide on the remoulded properties of clays is dependent on the mineralogy of the clays. On addition to bentonite clay, the immensely large number of segments (repeat units) of the starch polysaccharide create several polymer segment - clay surface bonds that cause extensive aggregation of the bentonite units layers. The aggregation of the bentonite unit layers greatly curtails the available surface area of the clay mineral for diffuse ion layer formation. The reduction in diffuse ion layer thickness markedly lowers the consistency limits and vane shear strength of the bentonite clay. On addition to kaolinite, the numerous polymer segment - clay surface bonds enhance the tendency of the kaolinite particles to flocculate. The enhanced particle flocculation is responsible apparently for a small to moderate increase in the liquid limit and remoulded undrained strength of the nonswelling clay.