97 resultados para Shape.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Small-angle neutron scattering (SANS) measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(3)-N+ (CH3)(2)C16H33 2Br(-) dimeric surfactant, referred to as 16-3-16, at different concentrations and temperatures, are reported. It is seen that micelles are disc-like for concentrations C = 2.5 and 10 mM at temperature T = 30 degrees C. At low concentration C = 0.5 mM micelles are rod-like. Similarly, there is a disc to rod-like transition of micelles on increasing the temperature. For C = 2.5 mM, micelles are rod-like at T = 45 and 70 degrees C.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid-solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading-unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 10(6) for stress-free temperature-induced transformation and 10(4) for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress-strain hysteresis loop is observed for mechanical loading with higher rates.
Resumo:
GEODERM, a microcomputer-based solid modeller, which incorporates the parametric object model, is discussed. The entity-relationship model, which is used to describe the conceptual schema of the geometric database, is also presented. Three of the four modules of GEODERM, which have been implemented are described in some detail. They are the Solid Definition Language (SDL), the Solid Manipulation Language (SML) and the User-System Interface.
Resumo:
Low frequency fluctuations in the electrical resistivity, or noise, have been used as a sensitive tool to probe into the temperature driven martensite transition in dc magnetron sputtered thin films of nickel titanium shape-memory alloys. Even in the equilibrium or static case, the noise magnitude was more than nine orders of magnitude larger than conventional metallic thin films and had a characteristic dependence on temperature. We observe that the noise while the temperature is being ramped is far larger as compared to the equilibrium noise indicating the sensitivity of electrical resistivity to the nucleation and propagation of domains during the shape recovery. Further, the higher order statistics suggests the existence of long range correlations during the transition. This new characterization is based on the kinetics of disorder in the system and separate from existing techniques and can be integrated to many device applications of shape memory alloys for in-situ shape recovery sensing.
Resumo:
The influence of Lorentz and Doppler line-broadening mechanisms on the small-signal optical gain of lasers and, in particular, gasdynamic lasers, is discussed. A relationship between the critical parameter reflecting the line-broadening mechanisms and some of the important parameters arising out of the gain optimization studies in CO2-N2 gasdynamic lasers is established. Using this relationship, methods by which the deleterious effect of the Doppler mechanisms on small-signal gain can be suppressed are suggested. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
Spatial dimensionality affects the degree of confinement when an electron-hole pair is squeezed from one or more dimensions approaching the bulk exciton Bohr radius (alpha(B)) limit. The etectron-hole interaction in zero-dimensional (0D) dots, one-dimensional (1D) rods/wires, and two-dimensional (2D) wells/sheets should be enhanced by the increase in confinement dimensions in the order 0D > 1D > 2D. We report the controlled synthesis of PbS nanomateriats with 0D, 1D, and 2D forms retaining at least one dimension in the strongly confined regime far below alpha(B) (similar to 10 nm for PbS) and provide evidence through varying the exciton-phonon coupling strength that the degree of confinement is systematically weakened by the loss of confinement dimension. Geometry variations show distinguishable far-field optical polarizations, which could find useful applications in polarization-sensitive devices.
Resumo:
Uncertainties associated with the structural model and measured vibration data may lead to unreliable damage detection. In this paper, we show that geometric and measurement uncertainty cause considerable problem in damage assessment which can be alleviated by using a fuzzy logic-based approach for damage detection. Curvature damage factor (CDF) of a tapered cantilever beam are used as damage indicators. Monte Carlo simulation (MCS) is used to study the changes in the damage indicator due to uncertainty in the geometric properties of the beam. Variation in these CDF measures due to randomness in structural parameter, further contaminated with measurement noise, are used for developing and testing a fuzzy logic system (FLS). Results show that the method correctly identifies both single and multiple damages in the structure. For example, the FLS detects damage with an average accuracy of about 95 percent in a beam having geometric uncertainty of 1 percent COV and measurement noise of 10 percent in single damage scenario. For multiple damage case, the FLS identifies damages in the beam with an average accuracy of about 94 percent in the presence of above mentioned uncertainties. The paper brings together the disparate areas of probabilistic analysis and fuzzy logic to address uncertainty in structural damage detection.
Resumo:
An experimental study is presented to show the effect of the cowl location and shape on the shock interaction phenomena in the inlet region for a 2D, planar scramjet inlet model. Investigations include schlieren visualization around the cowl region and heat transfer rate measurement inside the inlet chamber.Both regular and Mach reflections are observed when the forebody ramp shock reflects from the cowl plate. Mach stem heights of 3.3 mm and 4.1 mm are measured in 18.5 mm and 22.7 mm high inlet chambers respecively. Increased heat transfer rate is measured at the same location of chamber for cowls of longer lenghs is indicating additional mass flow recovery by the inlet.
Resumo:
The control of shapes of nanocrystals is crucial for using them as building blocks for various applications. In this paper, we present a critical overview of the issues involved in shape-controlled synthesis of nanostructures. In particular, we focus on the mechanisms by which anisotropic structures of high-symmetry materials (fcc crystals, for instance) could be realized. Such structures require a symmetry-breaking mechanism to be operative that typically leads to selection of one of the facets/directions for growth over all the other symmetry-equivalent crystallographic facets. We show how this selection could arise for the growth of one-dimensional structures leading to ultrafine metal nanowires and for the case of two-dimensional nanostructures where the layer-by-layer growth takes place at low driving forces leading to plate-shaped structures. We illustrate morphology diagrams to predict the formation of two-dimensional structures during wet chemical synthesis. We show the generality of the method by extending it to predict the growth of plate-shaped inorganics produced by a precipitation reaction. Finally, we present the growth of crystals under high driving forces that can lead to the formation of porous structures with large surface areas.
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
An experimental investigation into the ambient temperature, load-controlled tension�tension fatigue behavior of a martensitic Nitinol shape memory alloy (SMA) was conducted. Fatigue life for several stress levels spanning the critical stress for detwinning was determined and compared with that obtained on an alloy similar in composition but in the austenitic state at room temperature. Results show that the fatigue life of the pseudo-plastic alloy is superior to superelastic shape memory alloy. The stress�strain hysteretic response, monitored throughout the fatigue loading, reveals progressive strain accumulation with the cyclic loading. In addition, the area of hysteresis and recoverable and frictional energies were found to decrease with increasing number of fatigue cycles. Post-mortem characterization of the fatigued specimens through calorimetry and fractography was conducted in order to get further insight into the fatigue micromechanisms. These results are discussed in terms of reversible and irreversible microstructural changes that take place during cyclic loading. Aspects associated with self-heating of martensitic alloy undergoing high frequency stress cycling are discussed.
Resumo:
Crack loading and crack extension in pseudoelastic binary NiTi shape memory alloy (SMA) miniature compact tension (CT) specimens with 50.7 at.% Ni (austenitic, pseudoelastic) was investigated using infrared (IR) thermography during in situ loading and unloading. IR thermographic measurements allow for the observation of heat effects associated with the stress-induced transformation of martensite from B2 to BIT during loading and the reverse transformation during unloading. The results are compared with optical images and discussed in terms of the crack growth mechanisms in pseudoelastic NiTi SMAs. Direct experimental evidence is presented which shows that crack growth occurs into a stress-induced martensitic microstructure, which immediately retransforms to austenite in the wake of the crack.
Resumo:
We employ a fluctuation-based technique to investigate the athermal component associated with martensite phase transition, which is a prototype of temperature-driven structural transformation. Statistically, when the phase transition is purely athermal, we find that the temporal sequence of avalanches under constant drive is insensitive to the drive rate. We have used fluctuations in electrical resistivity or noise in nickel titanium shape memory alloys in three different forms: a thin film exhibiting well-defined transition temperatures,a highly disordered film, and a bulk wire of rectangular cross-section. Noise is studied in the realm of dynamic transition,viz.while the temperature is being ramped, which probes into the kinetics of the transformation at real time scales,and could probably stand out as a promising tool for material testing in various other systems, including nanoscale devices.
Resumo:
The performance of surface aeration systems, among other key design variables, depends upon the geometric parameters of the aeration tank. Efficient performance and scale up or scale down of the experimental results of an aeration ystem requires optimal geometric conditions. Optimal conditions refer to the conditions of maximum oxygen transfer rate, which assists in scaling up or down the system for ommercial utilization. The present work investigates the effect of an aeration tank's shape (unbaffled circular, baffled circular and unbaffled square) on oxygen transfer. Present results demonstrate that there is no effect of shape on the optimal geometric conditions for rotor position and rotor dimensions. This experimentation shows that circular tanks (baffled or unbaffled) do not have optimal geometric conditions for liquid transfer, whereas the square cross-section tank shows a unique geometric shape to optimize oxygen transfer.