109 resultados para Sexually propagation
em Indian Institute of Science - Bangalore - Índia
Resumo:
With the use of tensor analysis and the method of singular surfaces, an infinite system of equations can be derived to study the propagation of curved shocks of arbitrary strength in gas dynamics. The first three of these have been explicitly given here. This system is further reduced to one involving scalars only. The choice of dependent variables in the infinite system is quite important, it leads to coefficients free from singularities for all values of the shock strength.
Resumo:
Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.
Resumo:
We consider the problem of deciding whether the output of a boolean circuit is determined by a partial assignment to its inputs. This problem is easily shown to be hard, i.e., co-Image Image -complete. However, many of the consequences of a partial input assignment may be determined in linear time, by iterating the following step: if we know the values of some inputs to a gate, we can deduce the values of some outputs of that gate. This process of iteratively deducing some of the consequences of a partial assignment is called propagation. This paper explores the parallel complexity of propagation, i.e., the complexity of determining whether the output of a given boolean circuit is determined by propagating a given partial input assignment. We give a complete classification of the problem into those cases that are Image -complete and those that are unlikely to be Image complete.
Resumo:
In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.
Resumo:
The AISI 4340 steel has been electroslag refined and the improvement in mechanical properties has been assessed. Electroslag refining (ESR) has improved tensile ductility, plane strain fracture toughness, Charpy fracture energy, and has decreased fatigue crack growth rates. The KIC values for the ESR steel are nearly twice those estimated in the unrefined steel and higher than those obtained in the vacuum arc remelted steel. Fatigue crack growth rates in region I and in region III are found to be decreased considerably in the ESR steel, while they are unaffected in region II. Measurements on heat treated samples have shown that the ESR steel has a better response to heat treatment. Both the suggested heat treatments namely austenitizing at 1140–1470 K as well as the conventional heat treatment of austenitizing at 1140 K have been followed. The improvement in the mechanical properties of ESR steel has been explained on the basis of removal of nonmetallic inclusions and reduction in sulfur content in the steel.
Resumo:
Multiple shoots were induced from nodal segments of five year old trees of Eucalyptus grandis L. on solid medium containing Murashige and Skoog's (MS) Basal medium supplemented with additional thiamine, BAP and NAA. Rooting could be achieved from shoot culture on half strength MS salts or white's medium supplemented with low auxins like IAA, IBA and NAA.
Resumo:
The normal-mode solution to the problem of acoustic wave propagation in an isovelocity ocean with a wavy surface is considered. The surface wave amplitude is assumed to be small compared to the acoustic wavelength, and the method of multiple scales is employed to study the interaction between normal-mode acoustic waves and the surface waves. A nonresonant interaction causes small fluctuations of the amplitude and phase of the acoustic wave at a rate dependent on the frequency of the surface wave. Backscatter occurs if the wavenumber of the surface wave is larger than that of the acoustic wave. The interaction becomes resonant if appropriate phase-matching conditions are satisfied. In this case, two acoustic normal modes get coupled, resulting in a large-scale periodic exchange of energy from one mode to another.
Resumo:
3-D KCL are equations of evolution of a propagating surface (or a wavefront) Omega(t), in 3-space dimensions and were first derived by Giles, Prasad and Ravindran in 1995 assuming the motion of the surface to be isotropic. Here we discuss various properties of these 3-D KCL.These are the most general equations in conservation form, governing the evolution of Omega(t) with singularities which we call kinks and which are curves across which the normal n to Omega(t) and amplitude won Omega(t) are discontinuous. From KCL we derive a system of six differential equations and show that the KCL system is equivalent to the ray equations of 2, The six independent equations and an energy transport equation (for small amplitude waves in a polytropic gas) involving an amplitude w (which is related to the normal velocity m of Omega(t)) form a completely determined system of seven equations. We have determined eigenvalues of the system by a very novel method and find that the system has two distinct nonzero eigenvalues and five zero eigenvalues and the dimension of the eigenspace associated with the multiple eigenvalue 0 is only 4. For an appropriately defined m, the two nonzero eigenvalues are real when m > 1 and pure imaginary when m < 1. Finally we give some examples of evolution of weakly nonlinear wavefronts.
Resumo:
In this paper the kinematics of a weak shock front governed by a hyperbolic system of conservation laws is studied. This is used to develop a method for solving problems, involving the propagation of nonlinear unimodal waves. It consists of first solving the nonlinear wave problem by moving along the bicharacteristics of the system and then fitting the shock into this solution field, so that it satisfies the necessary jump conditions. The kinematics of the shock leads in a natural way to the definition of ldquoshock-raysrdquo, which play the same role as the ldquoraysrdquo in a continuous flow. A special case of a circular cylinder introduced suddenly in a constant streaming flow is studied in detail. The shock fitted in the upstream region propagates with a velocity which is the mean of the velocities of the linear and the nonlinear wave fronts. In the downstream the solution is given by an expansion wave.
Resumo:
In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.
Resumo:
Ca2+ ions are absolutely necessary for the propagation of mycobacteriophage I3 in synthetic medium. These ions are required for successful infection of the host and during the entire span of the intracellular development of the phage. A direct assay of the phage DNA injection using 32[P] labelled phage, showns that Ca2+ ions are necessary for the injection process. The injection itself is a slow process and takes 15 min to complete at 37°C. The bacteria infected in presence of Ca2+ tend to abort if the ions are subsequently withdrawn from the growth medium. The effect of calcium withdrawal is maximally felt during the early part of the latent period; however, later supplementation of Ca2+ ions salvage phage production and the mature phage progeny appear after a delayed interval, proportional to the time of addition of Ca2+.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
A parametric study of the flood wave propagation problem is made, based on numerical solution of the nondimensionalized unsteady flow equations of open channels. The propagation of a sinusoidal flood wave in a prismatic channel is studied for uniform initial flow. The governing parameters (initial uniform flow Froude number, wave amplitude, wave duration, channel width parameter and side slope) are varied over a wide range. In all, 49 cases are studied. Effects of these governing parameters on the subsidence of stage and discharge and the speed of the wave peak are described in detail. The relative wave amplitude is found to vary linearly with F0, the initial uniform flow froude number, for lower F0 values. Wave duration has a very pronounced effect on subsidence with greater subsidence at lower wave duration values.
Resumo:
Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.
Resumo:
The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.