6 resultados para Sexual identity management strategies
em Indian Institute of Science - Bangalore - Índia
Resumo:
We describe the on-going design and implementation of a sensor network for agricultural management targeted at resource-poor farmers in India. Our focus on semi-arid regions led us to concentrate on water-related issues. Throughout 2004, we carried out a survey on the information needs of the population living in a cluster of villages in our study area. The results highlighted the potential that environment-related information has for the improvement of farming strategies in the face of highly variable conditions, in particular for risk management strategies (choice of crop varieties, sowing and harvest periods, prevention of pests and diseases, efficient use of irrigation water etc.). This leads us to advocate an original use of Information and Communication Technologies (ICT). We believe our demand-driven approach for the design of appropriate ICT tools that are targeted at the resource-poor to be relatively new. In order to go beyond a pure technocratic approach, we adopted an iterative, participatory methodology.
Resumo:
Carbon footprint (CF) refers to the total amount of carbon dioxide and its equivalents emitted due to various anthropogenic activities. Carbon emission and sequestration inventories have been reviewed sector-wise for all federal states in India to identify the sectors and regions responsible for carbon imbalances. This would help in implementing appropriate climate change mitigation and management strategies at disaggregated levels. Major sectors of carbon emissions in India are through electricity generation, transport, domestic energy consumption, industries and agriculture. A majority of carbon storage occurs in forest biomass and soil. This paper focuses on the statewise carbon emissions (CO2. CO and CH4), using region specific emission factors and statewise carbon sequestration capacity. The estimate shows that CO2, CO and CH4 emissions from India are 965.9, 22.5 and 16.9 Tg per year, respectively. Electricity generation contributes 35.5% of total CO2 emission, which is followed by the contribution from transport. Vehicular transport exclusively contributes 25.5% of total emission. The analysis shows that Maharashtra emits higher CO2, followed by Andhra Pradesh, Uttar Pradesh, Gujarat, Tamil Nadu and West Bengal. The carbon status, which is the ratio of annual carbon storage against carbon emission, for each federal state is computed. This shows that small states and union territories (UT) like Arunachal Pradesh, Mizoram and Andaman and Nicobar Islands, where carbon sequestration is higher due to good vegetation cover, have carbon status > 1. Annually, 7.35% of total carbon emissions get stored either in forest biomass or soil, out of which 34% is in Arunachal Pradesh, Madhya Pradesh, Chhattisgarh and Orissa. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Lentic ecosystems vital functions such as recycling of nutrients, purification of water, recharge of groundwater,augmenting and maintenance of stream flow and habitat provision for a wide variety of flora and fauna along with their recreation values necessitates their sustainable management through appropriate conservation mechanisms. Failure to restore these ecosystems will result in extinction of species or ecosystem types and cause permanent ecological damage. In Bangalore, lentic ecosystems (for example lakes) have played a prominent role serving the needs of agriculture and drinking water. But the burgeoning population accompanied by unplanned developmental activities has led to the drastic reduction in their numbers (from 262 in 1976 to 81). The existing water bodies are contaminated by residential, agricultural, commercial and industrial wastes/effluents. In order to restore the ecosystem, assessment of the level of contamination is crucial. This paper focuses on characterisation and restoration aspects of Varthur lake based on hydrological, morphometric, physical-chemical and socio-economic investigations for a period of six months covering post monsoon seasons. The results of the water quality analysis show that the lake is eutrophic with high concentrations of phosphorous and organic matter. The morphometric analysis indicates that the lake is shallow in relation to its surface area. Socio-economic analyses show dependence of local residents for irrigation, fodder, etc. These analyses highlight the need and urgency to restore the physical, chemical and biological integrity through viable restoration and sustainable watershed management strategies, which include pollution abatement, catchment treatment, desilting of the lake and educating all stakeholders on the conservation and restoration of lake ecosystems.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Certain parts of the State of Nagaland situated in the northeastern region of India have been experiencing rainfall deficit over the past few years leading to severe drought-like conditions, which is likely to be aggravated under a climate change scenario. The state has already incurred considerable losses in the agricultural sector. Regional vulnerability assessments need to be carried out in order to help policy makers and planners formulate and implement effective drought management strategies. The present study uses an 'index-based approach' to quantify the climate variability-induced vulnerability of farmers in five villages of Dimapur district, Nagaland. Indicators, which are reflective of the exposure, sensitivity and adaptive capacity of the farmers to drought, were quantified on the basis of primary data generated through household surveys and participatory rural appraisal supplemented by secondary data in order to calculate a composite vulnerability index. The composite vulnerability index of village New Showba was found to be the least, while Zutovi, the highest. The overall results reveal that biophysical characteristics contribute the most to overall vulnerability. Some potential adaptation strategies were also identified based on observations and discussions with the villagers.