70 resultados para Sex ratio
em Indian Institute of Science - Bangalore - Índia
Resumo:
Consanguineous marriages are strongly favoured in the state of Karnataka. Of 65492 marriages studied 33·07% were consanguineous, equivalent to a coefficient of inbreeding (F) of 0·0298. The twinning rate was low, 6·9 per thousand, whereas the secondary sex ratio, 0·5221, was higher than in comparable major human populations. Consanguinity exerted no significant effect on either parameter. The results also indicate that consanguinity is not associated with excess antenatal losses and suggest the possibility of enhanced selection against mutations at X chromosome loci.
Resumo:
Two free-ranging packs of dholes (Asiatic wild dog, Cuon alpinus) were monitored for a period of 6 yr (Sep. 1990-Sep. 1996) in the Mudumalai sanctuary, southern India. Demographic data on age structure, litter-size, sex ratio and age and sex specific dispersal were collected. Behavioural data on social interactions and reproductive behaviour among pack members were obtained to determine the frequencies of dominant and subordinate behaviours shown by malt: and female pack members and a measure of each male's reproductive access to females. Behaviours displayed by pack members at dens were recorded to determine whether any age- or sex-specific role specialization existed during pup care. Tenures for dominant males and females within the pack were calculated to ascertain the rate of breeding vacancies occurring within packs. Approximate levels of genetic relatedness within packs were determined by studying pedigrees. In most years one study pack had a male-biased adult sex ratio. This was caused by almost twofold higher dispersal of adult females over adult males. A considerable variance existed in the percentage of sub-adults dispersing from the two packs. Differences existed in the frequencies of dominant and subordinate behaviours shown by males. For males, dominance ranks and ranks based on submissive behaviours were not correlated with frequencies of reproductive behaviours. Subordinate males also displayed reproductive behaviours. In packs, dominant males had lower tenures than dominant females indicating that among males breeding vacancies arose more quickly. The litter size was found to be negatively correlated with the age of the breeding female. There were no significant differences across individuals of varying age or sex classes in the display of pup care behaviours. Significant differences did exist among individual adults. Genetic relatedness among packs tended to vary temporally as a consequence of possible mating by subordinate animals and immigration of new males into the pack. In conclusion, it appears that males delay dispersal and cooperate within their natal packs because of the variety of reproductive strategies they could pursue within. A combination of ecological constraints and the difficulties of achieving breeding status within non-natal packs may make early dispersal and independent breeding less beneficial.
Resumo:
Among squamate reptiles, lizards exhibit an impressive array of sex-determining modes viz. genotypic sex determination, temperature-dependent sex determination, co-occurrence of both these and those that reproduce parthenogenetically. The oviparous lizard, Calotes versicolor, lacks heteromorphic sex chromosomes and there are no reports on homomorphic chromosomes. Earlier studies on this species presented little evidence to the sex-determining mechanism. Here we provide evidences for the potential role played by incubation temperature that has a significant effect (P<0.01) on gonadal sex and sex ratio. The eggs were incubated at 14 different incubation temperatures. Interestingly, 100% males were produced at low (25.5 +/- 0.5 degrees C) as well as high (34 +/- 0.5 degrees C) incubation temperatures and 100% females were produced at low (23.5 +/- 0.5 degrees C) and high (31.5 +/- 0.5 degrees C) temperatures, clearly indicating the occurrence of TSD in this species. Sex ratios of individual clutches did not vary at any of the critical male-producing or female-producing temperatures within as well as across the seasons. However, clutch sex ratios were female- or male-biased at intermediate temperatures. Thermosensitive period occurred during the embryonic stages 3033. Three pivotal temperatures operate producing 1:1 sex ratio. Histology of gonad and accessory reproductive structures provide additional evidence for TSD. The sex-determining pattern, observed for the first time in this species, that neither compares to Pattern I [Ia (MF) and Ib (FM)] nor to Pattern II (FMF), is being referred to as FMFM pattern of TSD. This novel FMFM pattern of sex ratio exhibited by C. versicolor may have an adaptive significance in maintaining sex ratio. J. Exp. Zool. 317:3246, 2012. (c) 2011 Wiley Periodicals, Inc.
Resumo:
Many large mammals such as elephant, rhino and tiger often come into conflict with people by destroying agricultural crops and even killing people, thus providing a deterrent to conservation efforts. The males of these polygynous species have a greater variance in reproductive success than females, leading to selection pressures favouring a ‘high risk-high gain’ strategy for promoting reproductive success. This brings them into greater conflict with people. For instance, adult male elephants are far more prone than a member of a female-led family herd to raid agricultural crops and to kill people. In polygynous species, the removal of a certain proportion of ‘surplus’ adult males is not likely to affect the fertility and growth rate of the population. Hence, this could be a management tool which would effectively reduce animal-human conflict, and at the same time maintain the viability of the population. Selective removal of males would result in a skewed sex ratio. This would reduce the ‘effective population size’ (as opposed to the total population or census number), increase the rate of genetic drift and, in small populations, lead to inbreeding depression. Plans for managing destructive mammals through the culling of males will have to ensure that the appropriate minimum size in the populations is being maintained.
Resumo:
We explore three possible pathways for the evolution of genomic imprinting. (1) Imprinting may be advantageous in itself when imprinted and unimprinted alleles of a locus confer different phenotypes. If a segment of DNA is imprinted in the gametes of one sex but not in those of the other, it might lead to effects correlated with sexual dimorphism. More fundamentally, in certain organisms, sex determination might have evolved because of imprinting. When imprinting leads to chromosome elimination or inactivation and occurs in some embryos but not in others, two classes of embryos, differing in the number of functional gene copies, would result. A model for sex determination based on inequality in the actual or effective copy-number of particular noncoding, regulatory sequences of DNA has been proposed (Chandra, Proc. natn. Acad. Sci. U.S.A. 82. 1165–1169 and 6947–6949, 1985). Maternal control of offspring sex is another possible consequence of imprinting; this would indicate a potential role for imprinting in sex ratio evolution. (2) Genes responsible for imprinting may have pleiotropic effects and they may have been selected for reasons other than their imprinting ability. Lack of evidence precludes further consideration of this possibility. (3) Imprinting could have co-evolved with other traits. For instance, gamete-specific imprinting could lead to a lowered fitness of androgenetic or gynogenetic diploids relative to the fitness of ‘normal’ diploids. This in turn would reinforce the evolution of anisogamy. The reversibility of imprinting raises the possibility of occasional incomplete or improper erasure. If the site of imprinting is the egg – as appears to be the case with the human X (Chandra and Brown, Nature 253. 165–168, 1975) – either improper imprinting or improper erasure could lead to unusual patterns of inheritance (as in the fragile-X syndrome) or fitness effects skipping generations.
Resumo:
We propose a molecular mechanism for the intra-cellular measurement of the ratio of the number of X chromosomes to the number of sets of autosomes, a process central to both sex determination and dosage compensation in Drosophila melanogaster. In addition to the two loci, da and Sxl, which have been shown by Cline (Genetics, 90, 683, 1978)and others to be involved in these processes, we postulate two other loci, one autosomal (ω) and the other, X-linked (π). The product of the autosomal locus da stimulates ω and initiates synthesis of a limited quantity of repressor. Sxl and π ,both of which are X-linked, compete for this repressor as well as for RNA polymerase. It is assumed that Sxl has lower affinity than π for repressor as well as polymerase and that the binding of polymerase to one of these sites modulates the binding affinity of the other site for the enzyme. It can be shown that as a result of these postulated interactions transcription from the Sxl site is proportional to the X/A ratio such that the levels of Sxl+ product are low in males, high in females and intermediate in the intersexes. If, as proposed by Cline, the Sxl- product is an inhibitor of X chromosome activity, this would result in dosage compensation. The model leads to the conclusion that high levels of Sxl+ product promote a female phenotype and low levels, a male phenotype. One interesting consequence of the assumptions on which the model is based is that the level of Sxl+ product in the cell, when examined as a function of increasing repressor concentration, first goes up and then decreases, yielding a bell-shaped curve. This feature of the model provides an explanation for some of the remarkable interactions among mutants at the Sxl, da and mle loci and leads to several predictions. The proposed mechanism may also have relevance to certain other problems, such as size regulation during development, which seem to involve measurement of ratios at the cellular level.
Modeling harvest rates and numbers from age and sex ratios: A demonstration for elephant populations
Resumo:
Illegal harvest rates of wildlife populations are often unknown or difficult to estimate from field data due to under-reporting or incomplete detection of carcasses. This is especially true for elephants that are killed for ivory or in conflicts with people. We describe a method to infer harvest rates from coarse field data of three population parameters, namely, adult female to male ratio, male old-adult to young-adult ratio, and proportion of adult males in the population using Jensen's (2000) 2-sex, density-dependent Leslie matrix model. The specific combination of male and female harvest rates and numbers can be determined from the history of harvest and estimate of population size. We applied this technique to two populations of elephants for which data on age structure and records of mortality were available-a forest-dwelling population of the Asian elephant (at Nagarahole, India) and an African savannah elephant population (at Samburu, Kenya) that had experienced male-biased harvest regimes over 2-3 decades. For the Nagarahole population, the recorded numbers of male and female elephants killed illegally during 1981-2000 were 64% and 88% of the values predicted by the model, respectively, implying some non-detection or incomplete reporting while for the Samburu population the recorded and modeled numbers of harvest during 1990-1999 closely matched. This technique, applicable to any animal population following logistic growth model, can be especially useful for inferring illegal harvest numbers of forest elephants in Africa and Asia.
Modeling harvest rates and numbers from age and sex ratios: A demonstration for elephant populations
Resumo:
Illegal harvest rates of wildlife populations are often unknown or difficult to estimate from field data due to under-reporting or incomplete detection of carcasses. This is especially true for elephants that are killed for ivory or in conflicts with people. We describe a method to infer harvest rates from coarse field data of three population parameters, namely, adult female to male ratio, male old-adult to young-adult ratio, and proportion of adult males in the population using Jensen's (2000) 2-sex, density-dependent Leslie matrix model. The specific combination of male and female harvest rates and numbers can be determined from the history of harvest and estimate of population size. We applied this technique to two populations of elephants for which data on age structure and records of mortality were available-a forest-dwelling population of the Asian elephant (at Nagarahole, India) and an African savannah elephant population (at Samburu, Kenya) that had experienced male-biased harvest regimes over 2-3 decades. For the Nagarahole population, the recorded numbers of male and female elephants killed illegally during 1981-2000 were 64% and 88% of the values predicted by the model, respectively, implying some non-detection or incomplete reporting while for the Samburu population the recorded and modeled numbers of harvest during 1990-1999 closely matched. This technique, applicable to any animal population following logistic growth model, can be especially useful for inferring illegal harvest numbers of forest elephants in Africa and Asia. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Evolutionarily stable sex ratios are determined for social hymenoptera under local mate competition (LMC) and when the brood size is finite. LMC is modelled by the parameter d. Of the reproductive progeny from a single foundress nest, a fraction d disperses (outbreeding), while (1-d) mate amongst themselves (sibmating). When the brood size is finite, d is taken to be the probability of an offspring dispersing, and similarly, r, the proportion of male offspring, the probability of a haploid egg being laid. Under the joint influence of these two stochastic processes, there is a nonzero probability that some females remain unmated in the nest. As a result, the optimal proportion of males (corresponding to the evolutionarily stable strategy, ESS) is higher than that obtained when the brood size is infinite. When the queen controls the sex ration, the ESS becomes more female biased under increased inbreeding (lower d), However, the ESS under worker control shows an unexpected pattern, including an increase in the proportion of males with increased inbreeding. This effect is traced to the complex interaction between inbreeding and local mate competition.
Resumo:
Certain recent models of sex determination in mammals, Drosophila melanogaster, Caenorhabditis elegans, and snakes are examined in the light of the hypothesis that the relevant genetic regulatory mechanisms are similar and interrelated. The proposed key element in each of these instances is a noncoding DNA sequence, which serves as a high-affinity binding site for a repressor-like molecule regulating the activity of a major "sex-determining" gene. On this basis it is argued that, in several eukaryotes, (i) certain DNA sequences that are sex-determining are noncoding, in the sense that they are not the structural genes of a sex-determining protein; (ii) in some species these noncoding sequences are present in one sex and absent in the other, while in others their copy number or accessibility to regulatory molecules is significantly unequal between the two sexes; and (iii) this inequality determines whether the embryo develops into a male or a female.
Resumo:
The evolutionary function of X chromosome inactivation is thought to be dosage compensation. However, there is, at present, little evidence to suggest that most X chromosome-linked genes require such compensation. Another view--that X chromosome inactivation may be related to sex determination--is examined here. Consider a hypothetical DNA sequence regulating a major structural gene concerned with the determination of maleness. If this regulatory sequence occurs in both X and Y chromosomes and if its copy number in the Y chromosome is significantly greater than in the X chromosome, then the male-determining properties of the Y chromosome could be attributed to this higher copy number. On the other hand, if the Y chromosome has the same copy number of this sequence as the X chromosome, it is difficult to see how determination of two sexes would occur under such circumstances because XX and XY genomes would then be indistinguishable in this regard. Such a situation seems to occur in the human species with respect to the banded krait minor satellite, a repetitious DNA sequence associated with sex determination. This apparent difficulty may be resolved if X chromosome inactivation renders regulatory as well as structural genes nonfunctional and thereby brings about a significant reduction in the effective copy number of X chromosome-linked DNA sequences concerned with sex determination. It is suggested that X chromosome inactivation brings about, in this manner, a critical inequality between XX and XY embryos and that sex determination in humans is a consequence of this inequality. An analogous situation appears to exist in certain insects in which inactivation of a haploid set of chromosomes (and presumably, therefore, a 50% reduction in the effective copy number of most genes) is associated with maleness. If this line of reasoning is correct, it would suggest that sex determination may be the primary function of X chromosome inactivation.