3 resultados para Sermones s.XV-XVI

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reduction of trans-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XI) by lithium tri-t-butoxyaluminohydride gave trans-1β-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XII) which on lithium-liquid ammonia reduction gave trans-anti-1β-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XIII). Reduction of cis-1-oxo-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XV) by sodium borohydride gave cis-1α-hydroxy-7-methoxy-1,2,3,4,9,10,11,12-octahydrophenanthrene (XVI) which on lithium-liquid ammonia reduction gave cis-syn-1α-hydroxy-7-oxo-Δ8(14)-dodecahydrophenanthrene (XVII).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure, previously assigned to zerumbone, has been found to be untenable. The ketone has been shown to be monocyclic containing three ethylenic linkages, and has been further correlated with humulene. Results from ozonolysis, and base-catalysed cleavage allowed the compound to be formulated as 2,6,9,9-tetramethyl-2,6,10-cyclo-undecatrien-1-one.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Lysine D-glutamate crystallizes in the monoclinic space group P2(1) with a = 4.902, b = 30.719, c = 9.679 A, beta = 90 degrees and Z = 4. The crystals of L-lysine D-aspartate monohydrate belong to the orthorhombic space group P2(1)2(1)2(1) with a = 5.458, b = 7.152, c = 36.022 A and Z = 4. The structures were solved by the direct methods and refined to R values of 0.125 and 0.040 respectively for 1412 and 1503 observed reflections. The glutamate complex is highly pseudosymmetric. The lysine molecules in it assume a conformation with the side chain staggered between the alpha-amino and the alpha-carboxylate groups. The interactions of the side chain amino groups of lysine in the two complexes are such that they form infinite sequences containing alternating amino and carboxylate groups. The molecular aggregation in the glutamate complex is very similar to that observed in L-arginine D-aspartate and L-arginine D-glutamate trihydrate, with the formation of double layers consisting of both types of molecules. In contrast to the situation in the other three LD complexes, the unlike molecules in L-lysine D-aspartate monohydrate aggregate into alternating layers as in the case of most LL complexes. The arrangement of molecules in the lysine layer is nearly the same as in L-lysine L-aspartate, with head-to-tail sequences as the central feature. The arrangement of aspartate ions in the layers containing them is, however, somewhat unusual. Thus the comparison between the LL and the LD complexes analyzed so far indicates that the reversal of chirality of one of the components in a complex leads to profound changes in molecular aggregation, but these changes could be of more than one type.