120 resultados para Semi-Regular Operators
em Indian Institute of Science - Bangalore - Índia
Resumo:
The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
A plane strain elastic interaction analysis of a strip footing resting on a reinforced soil bed has been made by using a combined analytical and finite element method (FEM). In this approach the stiffness matrix for the footing has been obtained using the FEM, For the reinforced soil bed (halfplane) the stiffness matrix has been obtained using an analytical solution. For the latter, the reinforced zone has been idealised as (i) an equivalent orthotropic infinite strip (composite approach) and (ii) a multilayered system (discrete approach). In the analysis, the interface between the strip footing and reinforced halfplane has been assumed as (i) frictionless and (ii) fully bonded. The contact pressure distribution and the settlement reduction have been given for different depths of footing and scheme of reinforcement in soil. The load-deformation behaviour of the reinforced soil obtained using the above modelling has been compared with some available analytical and model test results. The equivalent orthotropic approach proposed in this paper is easy to program and is shown to predict the reinforcing effects reasonably well.
Resumo:
We present measurements of the rheology of suspensions of rigid spheres in a semi-dilute polymer solution from experiments of steady and oscillatory shear. For a given value of the shear rate gamma, addition of particles enhances the viscosity and the first normal stress difference but decreases the magnitude of the second normal stress difference. The viscosity eta exhibits a power law variation in gamma for a range of gamma that grows with phi. The first normal stress N-1 is positive and its value grows with phi; it exhibits a clear power law variation for the entire range of gamma that was studied. The second normal stress difference N-2 is negative for the pure polymer solution and much smaller in magnitude than N-1; on addition of particles, its magnitude further decreases, and it appears to change sign at large phi. The behavior of N-1 and N-2 is at odds with the findings of recent studies on particle-loaded dilute polymer solutions and polymer melts. The small-amplitude oscillatory shear experiments show the linear viscoelastic properties, G(') and G('), increasing with phi at a given value of the angular frequency omega. The dynamic viscosity of the suspension differs substantially from its steady shear viscosity, and the difference increases as gamma, omega -> 0.
Resumo:
A complete list of homogeneous operators in the Cowen-Douglas class B-n(D) is given. This classification is obtained from an explicit realization of all the homogeneous Hermitian holomorphic vector bundles on the unit disc under the action of the universal covering group of the bi-holomorphic automorphism group of the unit disc.
Resumo:
Some properties of the eigenvalues of the integral operator Kgt defined as Kτf(x) = ∫0τK(x − y) f (y) dy were studied by [1.], 554–566), with some assumptions on the kernel K(x). In this paper the eigenfunctions of the operator Kτ are shown to be continuous functions of τ under certain circumstances. Also, the results of Vittal Rao and the continuity of eigenfunctions are shown to hold for a larger class of kernels.
Resumo:
Recently, reports have appeared which show structural variations in B-DNA and indicate deviations from a uniform helical structure. We report for the first time that these indications are also present in the B-form fibre diffraction patterns for the lithium salt of natural DNA. We have used an improved method of controlling the salt concentration in the fibres. Our results are based on the appearance and disappearance of meridional reflections on different layer lines depending upon the salt.
Resumo:
Micropolar fluid flow over a semi-infinite flat plate has been described by using the parabolic co-ordinates and the method of series truncation in order to study the flow for low to large Reynolds numbers. These co-ordinates permit to study the flow regime at the leading edge. Numerical results have been presented for different Reynolds numbers. Results show a reduction in skin friction.
Resumo:
Unary operators are functions of a single variable. Realization of quaternary unary operators (QUOs) using quaternary multiplexer (QMUX) is presented in this paper. QUOs are divided into eight groups on the basis of the number of change overs in the output for an input sequence of 0, 1, 2, 3. This grouping reduces the hardware required to realize them. QMUX with two, three, and four input lines are proposed for the realization of QUOs belonging to the eight groups. A systematic procedure for the selection of QMUX and the implementation of the QUOs are given. The QMUXs are designed using CMOS ICs. The hardware required for their implementation is also discussed.
Resumo:
In the present paper an exact similar solution of the Navier-Stokes equation for unsteady flow of a dilute suspension in a semi-infinite contracting or expanding circular pipe is presented. The effects of the Schmidt number (Sc), Reynolds number (|ε|), the volume fraction (α) and the relaxation time (τ) of the particulate phase on the flow characteristics are examined. The presence of the solid particles has been observed to influence the flow behaviour significantly. These solutions are valid down to the state of a completely collapsed pipe, since the nonlinearity is retained fully. The results may help understanding the flow near the heart and certain forced contractions or expansions of valved veins.
Resumo:
A semi-similar solution of an unsteady laminar compressible three-dimensional stagnation point boundary layer flow with massive blowing has been obtained when the free stream velocity varies arbitrarily with time. The resulting partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme with a quasi-linearization technique in the nodal point region and an implicit finite-difference scheme with a parametric differentiation technique in the saddle point region. The results have been obtained for two particular unsteady free stream velocity distributions: (i) an accelerating stream and (ii) a fluctuating stream. Results show that the skin-friction and heat-transfer parameters respond significantly to the time dependent arbitrary free stream velocity. Velocity and enthalpy profiles approach their free stream values faster as time increases. There is a reverse flow in the y-wise velocity profile, and overshoot in the x-wise velocity and enthalpy profiles in the saddle point region, which increase as injection and wall temperature increase. Location of the dividing streamline increases as injection increases, but as the wall temperature and time increase, it decreases.
Resumo:
Para-Bose commutation relations are related to the SL(2,R) Lie algebra. The irreducible representation [script D]alpha of the para-Bose system is obtained as the direct sum Dbeta[direct-sum]Dbeta+1/2 of the representations of the SL(2,R) Lie algebra. The position and momentum eigenstates are then obtained in this representation [script D]alpha, using the matrix mechanical method. The orthogonality, completeness, and the overlap of these eigenstates are derived. The momentum eigenstates are also derived using the wave mechanical method by specifying the domain of the definition of the momentum operator in addition to giving it a formal differential expression. By a careful consideration in this manner we find that the two apparently different solutions obtained by Ohnuki and Kamefuchi in this context are actually unitarily equivalent. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Mesh topologies are important for large-scale peer-to-peer systems that use low-power transceivers. The Quality of Service (QoS) in such systems is known to decrease as the scale increases. We present a scalable approach for dissemination that exploits all the shortest paths between a pair of nodes and improves the QoS. Despite th presence of multiple shortest paths in a system, we show that these paths cannot be exploited by spreading the messages over the paths in a simple round-robin manner; nodes along one of these paths will always handle more messages than the nodes along the other paths. We characterize the set of shortest paths between a pair of nodes in regular mesh topologies and derive rules, using this characterization, to effectively spread the messages over all the available paths. These rules ensure that all the nodes that are at the same distance from the source handle roughly the same number of messages. By modeling the multihop propagation in the mesh topology as a multistage queuing network, we present simulation results from a variety of scenarios that include link failures and propagation irregularities to reflect real-world characteristics. Our method achieves improved QoS in all these scenarios.