30 resultados para Searching, bibliographical
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose a novel, language-neutral approach for searching online handwritten text using Frechet distance. Online handwritten data, which is available as a time series (x,y,t), is treated as representing a parameterized curve in two-dimensions and the problem of searching online handwritten text is posed as a problem of matching two curves in a two-dimensional Euclidean space. Frechet distance is a natural measure for matching curves. The main contribution of this paper is the formulation of a variant of Frechet distance that can be used for retrieving words even when only a prefix of the word is given as query. Extensive experiments on UNIPEN dataset(1) consisting of over 16,000 words written by 7 users show that our method outperforms the state-of-the-art DTW method. Experiments were also conducted on a Multilingual dataset, generated on a PDA, with encouraging results. Our approach can be used to implement useful, exciting features like auto-completion of handwriting in PDAs.
Resumo:
A brief review of the various high pressure studies on the phase transitions in ferroelectric crystals carried out over the past two decades is presented. The theoretical framework in which high pressure studies have to be viewed is given. The pressure data of ferroelectric crystals are organized in the form of tables. High pressure spectroscopic and structural studies are included. The review contains a bibliography of over two hundred references.
Resumo:
Purpose - There are many library automation packages available as open-source software, comprising two modules: staff-client module and online public access catalogue (OPAC). Although the OPAC of these library automation packages provides advanced features of searching and retrieval of bibliographic records, none of them facilitate full-text searching. Most of the available open-source digital library software facilitates indexing and searching of full-text documents in different formats. This paper makes an effort to enable full-text search features in the widely used open-source library automation package Koha, by integrating it with two open-source digital library software packages, Greenstone Digital Library Software (GSDL) and Fedora Generic Search Service (FGSS), independently. Design/methodology/approach - The implementation is done by making use of the Search and Retrieval by URL (SRU) feature available in Koha, GSDL and FGSS. The full-text documents are indexed both in Koha and GSDL and FGSS. Findings - Full-text searching capability in Koha is achieved by integrating either GSDL or FGSS into Koha and by passing an SRU request to GSDL or FGSS from Koha. The full-text documents are indexed both in the library automation package (Koha) and digital library software (GSDL, FGSS) Originality/value - This is the first implementation enabling the full-text search feature in a library automation software by integrating it into digital library software.
Resumo:
With the availability of a huge amount of video data on various sources, efficient video retrieval tools are increasingly in demand. Video being a multi-modal data, the perceptions of ``relevance'' between the user provided query video (in case of Query-By-Example type of video search) and retrieved video clips are subjective in nature. We present an efficient video retrieval method that takes user's feedback on the relevance of retrieved videos and iteratively reformulates the input query feature vectors (QFV) for improved video retrieval. The QFV reformulation is done by a simple, but powerful feature weight optimization method based on Simultaneous Perturbation Stochastic Approximation (SPSA) technique. A video retrieval system with video indexing, searching and relevance feedback (RF) phases is built for demonstrating the performance of the proposed method. The query and database videos are indexed using the conventional video features like color, texture, etc. However, we use the comprehensive and novel methods of feature representations, and a spatio-temporal distance measure to retrieve the top M videos that are similar to the query. In feedback phase, the user activated iterative on the previously retrieved videos is used to reformulate the QFV weights (measure of importance) that reflect the user's preference, automatically. It is our observation that a few iterations of such feedback are generally sufficient for retrieving the desired video clips. The novel application of SPSA based RF for user-oriented feature weights optimization makes the proposed method to be distinct from the existing ones. The experimental results show that the proposed RF based video retrieval exhibit good performance.
Resumo:
Several techniques are known for searching an ordered collection of data. The techniques and analyses of retrieval methods based on primary attributes are straightforward. Retrieval using secondary attributes depends on several factors. For secondary attribute retrieval, the linear structures—inverted lists, multilists, doubly linked lists—and the recently proposed nonlinear tree structures—multiple attribute tree (MAT), K-d tree (kdT)—have their individual merits. It is shown in this paper that, of the two tree structures, MAT possesses several features of a systematic data structure for external file organisation which make it superior to kdT. Analytic estimates for the complexity of node searchers, in MAT and kdT for several types of queries, are developed and compared.
Resumo:
A variety of data structures such as inverted file, multi-lists, quad tree, k-d tree, range tree, polygon tree, quintary tree, multidimensional tries, segment tree, doubly chained tree, the grid file, d-fold tree. super B-tree, Multiple Attribute Tree (MAT), etc. have been studied for multidimensional searching and related problems. Physical data base organization, which is an important application of multidimensional searching, is traditionally and mostly handled by employing inverted file. This study proposes MAT data structure for bibliographic file systems, by illustrating the superiority of MAT data structure over inverted file. Both the methods are compared in terms of preprocessing, storage and query costs. Worst-case complexity analysis of both the methods, for a partial match query, is carried out in two cases: (a) when directory resides in main memory, (b) when directory resides in secondary memory. In both cases, MAT data structure is shown to be more efficient than the inverted file method. Arguments are given to illustrate the superiority of MAT data structure in an average case also. An efficient adaptation of MAT data structure, that exploits the special features of MAT structure and bibliographic files, is proposed for bibliographic file systems. In this adaptation, suitable techniques for fixing and ranking of the attributes for MAT data structure are proposed. Conclusions and proposals for future research are presented.
Resumo:
Theoretical approaches are of fundamental importance to predict the potential impact of waste disposal facilities on ground water contamination. Appropriate design parameters are generally estimated be fitting theoretical models to data gathered from field monitoring or laboratory experiments. Transient through-diffusion tests are generally conducted in the laboratory to estimate the mass transport parameters of the proposed barrier material. Thes parameters are usually estimated either by approximate eye-fitting calibration or by combining the solution of the direct problem with any available gradient-based techniques. In this work, an automated, gradient-free solver is developed to estimate the mass transport parameters of a transient through-diffusion model. The proposed inverse model uses a particle swarm optimization (PSO) algorithm that is based on the social behavior of animals searching for food sources. The finite difference numerical solution of the forward model is integrated with the PSO algorithm to solve the inverse problem of parameter estimation. The working principle of the new solver is demonstrated and mass transport parameters are estimated from laboratory through-diffusion experimental data. An inverse model based on the standard gradient-based technique is formulated to compare with the proposed solver. A detailed comparative study is carried out between conventional methods and the proposed solver. The present automated technique is found to be very efficient and robust. The mass transport parameters are obtained with great precision.
Resumo:
It is known that DNA-binding proteins can slide along the DNA helix while searching for specific binding sites, but their path of motion remains obscure. Do these proteins undergo simple one-dimensional (1D) translational diffusion, or do they rotate to maintain a specific orientation with respect to the DNA helix? We measured 1D diffusion constants as a function of protein size while maintaining the DNA-protein interface. Using bootstrap analysis of single-molecule diffusion data, we compared the results to theoretical predictions for pure translational motion and rotation-coupled sliding along the DNA. The data indicate that DNA-binding proteins undergo rotation-coupled sliding along the DNA helix and can be described by a model of diffusion along the DNA helix on a rugged free-energy landscape. A similar analysis including the 1D diffusion constants of eight proteins of varying size shows that rotation-coupled sliding is a general phenomenon. The average free-energy barrier for sliding along the DNA was 1.1 +/- 0.2 k(B)T. Such small barriers facilitate rapid search for binding sites.
Resumo:
Data mining involves nontrivial process of extracting knowledge or patterns from large databases. Genetic Algorithms are efficient and robust searching and optimization methods that are used in data mining. In this paper we propose a Self-Adaptive Migration Model GA (SAMGA), where parameters of population size, the number of points of crossover and mutation rate for each population are adaptively fixed. Further, the migration of individuals between populations is decided dynamically. This paper gives a mathematical schema analysis of the method stating and showing that the algorithm exploits previously discovered knowledge for a more focused and concentrated search of heuristically high yielding regions while simultaneously performing a highly explorative search on the other regions of the search space. The effective performance of the algorithm is then shown using standard testbed functions and a set of actual classification datamining problems. Michigan style of classifier was used to build the classifier and the system was tested with machine learning databases of Pima Indian Diabetes database, Wisconsin Breast Cancer database and few others. The performance of our algorithm is better than others.
Resumo:
The sympatrically occurring Indian short-nosed fruit bat Cynopterus sphinx and Indian flying fox Pteropus giganteus visit Madhuca latifolia (Sapotaceae), which offers fleshy corollas (approximate to 300 mg) to pollinating bats. The flowers are white, tiny and in dense fascicles The foraging activities of the two bat species were segregated in space and time. Cynopterus sphinx fed on resources at lower heights in the trees than P giganteus and its peak foraging activity occurred at 19 30 h, before that of P giganteus Foraging activities involved short searching flights followed by landing and removal of the corolla by mouth Cynopterus sphinx detached single corollas from fascicles and carried them to nearby feeding roosts, where it sucked the juice and spat out the Fibrous remains Pteropus giganteus landed on top of the trees and fed on the corollas in situ, its peak activity occurred at 20 30 11 This species glided and crawled between the branches and held the branches with claws and forearms when removing fleshy corollas with Its Mouth Both C sphinx and P giganteus consumed fleshy corollas with attached stamens and left the gynoecium intact Bagging experiments showed that fruit-set in bat-visited flowers was significantly higher (P < 0.001) than in self-pollinated flowers.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
Template matching is concerned with measuring the similarity between patterns of two objects. This paper proposes a memory-based reasoning approach for pattern recognition of binary images with a large template set. It seems that memory-based reasoning intrinsically requires a large database. Moreover, some binary image recognition problems inherently need large template sets, such as the recognition of Chinese characters which needs thousands of templates. The proposed algorithm is based on the Connection Machine, which is the most massively parallel machine to date, using a multiresolution method to search for the matching template. The approach uses the pyramid data structure for the multiresolution representation of templates and the input image pattern. For a given binary image it scans the template pyramid searching the match. A binary image of N × N pixels can be matched in O(log N) time complexity by our algorithm and is independent of the number of templates. Implementation of the proposed scheme is described in detail.
Resumo:
Determining the sequence of amino acid residues in a heteropolymer chain of a protein with a given conformation is a discrete combinatorial problem that is not generally amenable for gradient-based continuous optimization algorithms. In this paper we present a new approach to this problem using continuous models. In this modeling, continuous "state functions" are proposed to designate the type of each residue in the chain. Such a continuous model helps define a continuous sequence space in which a chosen criterion is optimized to find the most appropriate sequence. Searching a continuous sequence space using a deterministic optimization algorithm makes it possible to find the optimal sequences with much less computation than many other approaches. The computational efficiency of this method is further improved by combining it with a graph spectral method, which explicitly takes into account the topology of the desired conformation and also helps make the combined method more robust. The continuous modeling used here appears to have additional advantages in mimicking the folding pathways and in creating the energy landscapes that help find sequences with high stability and kinetic accessibility. To illustrate the new approach, a widely used simplifying assumption is made by considering only two types of residues: hydrophobic (H) and polar (P). Self-avoiding compact lattice models are used to validate the method with known results in the literature and data that can be practically obtained by exhaustive enumeration on a desktop computer. We also present examples of sequence design for the HP models of some real proteins, which are solved in less than five minutes on a single-processor desktop computer Some open issues and future extensions are noted.
Resumo:
We present a frontier based algorithm for searching multiple goals in a fully unknown environment, with only information about the regions where the goals are most likely to be located. Our algorithm chooses an ``active goal'' from the ``active goal list'' generated by running a Traveling Salesman Problem (Tsp) routine with the given centroid locations of the goal regions. We use the concept of ``goal switching'' which helps not only in reaching more number of goals in given time, but also prevents unnecessary search around the goals that are not accessible (surrounded by walls). The simulation study shows that our algorithm outperforms Multi-Heuristic LRTA* (MELRTA*) which is a significant representative of multiple goal search approaches in an unknown environment, especially in environments with wall like obstacles.
Resumo:
This paper addresses the problem of automated multiagent search in an unknown environment. Autonomous agents equipped with sensors carry out a search operation in a search space, where the uncertainty, or lack of information about the environment, is known a priori as an uncertainty density distribution function. The agents are deployed in the search space to maximize single step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for the proposed sequential deploy and search strategy. It is shown that with the proposed control law the agent trajectories converge in a globally asymptotic manner to the centroidal Voronoi configuration. Simulation experiments are provided to validate the strategy. Note to Practitioners-In this paper, searching an unknown region to gather information about it is modeled as a problem of using search as a means of reducing information uncertainty about the region. Moreover, multiple automated searchers or agents are used to carry out this operation optimally. This problem has many applications in search and surveillance operations using several autonomous UAVs or mobile robots. The concept of agents converging to the centroid of their Voronoi cells, weighted with the uncertainty density, is used to design a search strategy named as sequential deploy and search. Finally, the performance of the strategy is validated using simulations.