93 resultados para Search Engines
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we first describe a framework to model the sponsored search auction on the web as a mechanism design problem. Using this framework, we describe two well-known mechanisms for sponsored search auction-Generalized Second Price (GSP) and Vickrey-Clarke-Groves (VCG). We then derive a new mechanism for sponsored search auction which we call optimal (OPT) mechanism. The OPT mechanism maximizes the search engine's expected revenue, while achieving Bayesian incentive compatibility and individual rationality of the advertisers. We then undertake a detailed comparative study of the mechanisms GSP, VCG, and OPT. We compute and compare the expected revenue earned by the search engine under the three mechanisms when the advertisers are symmetric and some special conditions are satisfied. We also compare the three mechanisms in terms of incentive compatibility, individual rationality, and computational complexity. Note to Practitioners-The advertiser-supported web site is one of the successful business models in the emerging web landscape. When an Internet user enters a keyword (i.e., a search phrase) into a search engine, the user gets back a page with results, containing the links most relevant to the query and also sponsored links, (also called paid advertisement links). When a sponsored link is clicked, the user is directed to the corresponding advertiser's web page. The advertiser pays the search engine in some appropriate manner for sending the user to its web page. Against every search performed by any user on any keyword, the search engine faces the problem of matching a set of advertisers to the sponsored slots. In addition, the search engine also needs to decide on a price to be charged to each advertiser. Due to increasing demands for Internet advertising space, most search engines currently use auction mechanisms for this purpose. These are called sponsored search auctions. A significant percentage of the revenue of Internet giants such as Google, Yahoo!, MSN, etc., comes from sponsored search auctions. In this paper, we study two auction mechanisms, GSP and VCG, which are quite popular in the sponsored auction context, and pursue the objective of designing a mechanism that is superior to these two mechanisms. In particular, we propose a new mechanism which we call the OPT mechanism. This mechanism maximizes the search engine's expected revenue subject to achieving Bayesian incentive compatibility and individual rationality. Bayesian incentive compatibility guarantees that it is optimal for each advertiser to bid his/her true value provided that all other agents also bid their respective true values. Individual rationality ensures that the agents participate voluntarily in the auction since they are assured of gaining a non-negative payoff by doing so.
Resumo:
In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.
Resumo:
In pay-per click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their ads. This auction is typically conducted for a number of rounds (say T). There are click probabilities mu_ij associated with agent-slot pairs. The search engine's goal is to maximize social welfare, for example, the sum of values of the advertisers. The search engine does not know the true value of an advertiser for a click to her ad and also does not know the click probabilities mu_ij s. A key problem for the search engine therefore is to learn these during the T rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced and would be referred to as multi-armed-bandit (MAB) mechanisms. When m = 1,characterizations for truthful MAB mechanisms are available in the literature and it has been shown that the regret for such mechanisms will be O(T^{2/3}). In this paper, we seek to derive a characterization in the realistic but nontrivial general case when m > 1 and obtain several interesting results.
Resumo:
Users can rarely reveal their information need in full detail to a search engine within 1--2 words, so search engines need to "hedge their bets" and present diverse results within the precious 10 response slots. Diversity in ranking is of much recent interest. Most existing solutions estimate the marginal utility of an item given a set of items already in the response, and then use variants of greedy set cover. Others design graphs with the items as nodes and choose diverse items based on visit rates (PageRank). Here we introduce a radically new and natural formulation of diversity as finding centers in resistive graphs. Unlike in PageRank, we do not specify the edge resistances (equivalently, conductances) and ask for node visit rates. Instead, we look for a sparse set of center nodes so that the effective conductance from the center to the rest of the graph has maximum entropy. We give a cogent semantic justification for turning PageRank thus on its head. In marked deviation from prior work, our edge resistances are learnt from training data. Inference and learning are NP-hard, but we give practical solutions. In extensive experiments with subtopic retrieval, social network search, and document summarization, our approach convincingly surpasses recently-published diversity algorithms like subtopic cover, max-marginal relevance (MMR), Grasshopper, DivRank, and SVMdiv.
Resumo:
Packet forwarding is a memory-intensive application requiring multiple accesses through a trie structure. With the requirement to process packets at line rates, high-performance routers need to forward millions of packets every second with each packet needing up to seven memory accesses. Earlier work shows that a single cache for the nodes of a trie can reduce the number of external memory accesses. It is observed that the locality characteristics of the level-one nodes of a trie are significantly different from those of lower level nodes. Hence, we propose a heterogeneously segmented cache architecture (HSCA) which uses separate caches for level-one and lower level nodes, each with carefully chosen sizes. Besides reducing misses, segmenting the cache allows us to focus on optimizing the more frequently accessed level-one node segment. We find that due to the nonuniform distribution of nodes among cache sets, the level-one nodes cache is susceptible t high conflict misses. We reduce conflict misses by introducing a novel two-level mapping-based cache placement framework. We also propose an elegant way to fit the modified placement function into the cache organization with minimal increase in access time. Further, we propose an attribute preserving trace generation methodology which emulates real traces and can generate traces with varying locality. Performanc results reveal that our HSCA scheme results in a 32 percent speedup in average memory access time over a unified nodes cache. Also, HSC outperforms IHARC, a cache for lookup results, with as high as a 10-fold speedup in average memory access time. Two-level mappin further enhances the performance of the base HSCA by up to 13 percent leading to an overall improvement of up to 40 percent over the unified scheme.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
The operational life and reliability of I.C. engines are limited to a certain extent by the break down of the engine components due to wear. It is advantageous to know the condition of an engine and its components without disassembling for detailed measurements. This paper describes the possibility of employing chemical analysis of the used crank case oil to predict the wear of engine components. It is concluded that the acidity and carbon contents of the crank case oil play a significant role in assessing the wear of copper-lead bearings used for the big end of the connecting rod.
Resumo:
In a search for inorganic oxide materials showing second-order nonlinear optical (NLO) susceptibility, we investigated several berates, silicates, and a phosphate containing trans-connected MO6, octahedral chains or MO5 square pyramids, where, M = d(0): Ti(IV), Nb(V), or Ta(V), Our investigations identified two new NLO structures: batisite, Na2Ba(TiO)(2)Si4O12, containing trans-connected TiO5 octahedral chains, and fresnoite, Ba2TiOSi2O7, containing square-pyramidal TiO5. Investigation of two other materials containing square-pyramidal TiO5 viz,, Cs2TiOP2O7 and Na4Ti2Si8O22. 4H(2)O, revealed that isolated TiO5, square pyramids alone do not cause a second harmonic generation (SHG) response; rather, the orientation of TiO5 units to produce -Ti-O-Ti-O- chains with alternating long and short Ti-O distances in the fresnoite structure is most likely the origin of a strong SHG response in fresnoite,
Resumo:
This paper gives a brief survey of research and development work done on hand pumps in India as well as elsewhere and sets out the approach adopted by ASTRA Working Group. Ten ways in which a hand pump breakdown in practice have been identified. The physical reasons behind each type of breakdown analysed. Remedial measures have been developed from this analysis. Laboratory test rigs fabricated to evaluate these measures have been described and some experimental results presented. The course of further work has been charted.
Resumo:
Abstract is not available.
Resumo:
Surface treatment alters the frictional behaviour of pistons in I.C. engines and can be used to improve engine performance. Surface treatments applied to aluminium alloy pistons of a high speed diesel engine and their effect on the engine performance are described. Certain piston surface treatments improve engine performance and also reduce the run-in period.
Resumo:
A method that yields optical Barker codes of smallest known lengths for given discrimination is described.
Location of concentrators in a computer communication network: a stochastic automation search method
Resumo:
The following problem is considered. Given the locations of the Central Processing Unit (ar;the terminals which have to communicate with it, to determine the number and locations of the concentrators and to assign the terminals to the concentrators in such a way that the total cost is minimized. There is alao a fixed cost associated with each concentrator. There is ail upper limit to the number of terminals which can be connected to a concentrator. The terminals can be connected directly to the CPU also In this paper it is assumed that the concentrators can bo located anywhere in the area A containing the CPU and the terminals. Then this becomes a multimodal optimization problem. In the proposed algorithm a stochastic automaton is used as a search device to locate the minimum of the multimodal cost function . The proposed algorithm involves the following. The area A containing the CPU and the terminals is divided into an arbitrary number of regions (say K). An approximate value for the number of concentrators is assumed (say m). The optimum number is determined by iteration later The m concentrators can be assigned to the K regions in (mk) ways (m > K) or (km) ways (K>m).(All possible assignments are feasible, i.e. a region can contain 0,1,…, to concentrators). Each possible assignment is assumed to represent a state of the stochastic variable structure automaton. To start with, all the states are assigned equal probabilities. At each stage of the search the automaton visits a state according to the current probability distribution. At each visit the automaton selects a 'point' inside that state with uniform probability. The cost associated with that point is calculated and the average cost of that state is updated. Then the probabilities of all the states are updated. The probabilities are taken to bo inversely proportional to the average cost of the states After a certain number of searches the search probabilities become stationary and the automaton visits a particular state again and again. Then the automaton is said to have converged to that state Then by conducting a local gradient search within that state the exact locations of the concentrators are determined This algorithm was applied to a set of test problems and the results were compared with those given by Cooper's (1964, 1967) EAC algorithm and on the average it was found that the proposed algorithm performs better.
Resumo:
Because of limited sensor and communication ranges, designing efficient mechanisms for cooperative tasks is difficult. In this article, several negotiation schemes for multiple agents performing a cooperative task are presented. The negotiation schemes provide suboptimal solutions, but have attractive features of fast decision-making, and scalability to large number of agents without increasing the complexity of the algorithm. A software agent architecture of the decision-making process is also presented. The effect of the magnitude of information flow during the negotiation process is studied by using different models of the negotiation scheme. The performance of the various negotiation schemes, using different information structures, is studied based on the uncertainty reduction achieved for a specified number of search steps. The negotiation schemes perform comparable to that of optimal strategy in terms of uncertainty reduction and also require very low computational time, similar to 7 per cent to that of optimal strategy. Finally, analysis on computational and communication requirement for the negotiation schemes is carried out.