33 resultados para Sculpture, Classical.
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper presents a novel algebraic formulation of the central problem of screw theory, namely the determination of the principal screws of a given system. Using the algebra of dual numbers, it shows that the principal screws can be determined via the solution of a generalised eigenproblem of two real, symmetric matrices. This approach allows the study of the principal screws of the general two-, three-systems associated with a manipulator of arbitrary geometry in terms of closed-form expressions of its architecture and configuration parameters. We also present novel methods for the determination of the principal screws for four-, five-systems which do not require the explicit computation of the reciprocal systems. Principal screws of the systems of different orders are identified from one uniform criterion, namely that the pitches of the principal screws are the extreme values of the pitch.The classical results of screw theory, namely the equations for the cylindroid and the pitch-hyperboloid associated with the two-and three-systems, respectively have been derived within the proposed framework. Algebraic conditions have been derived for some of the special screw systems. The formulation is also illustrated with several examples including two spatial manipulators of serial and parallel architecture, respectively.
Resumo:
Based on a Hamiltonian description we present a rigorous derivation of the transient state work fluctuation theorem and the Jarzynski equality for a classical harmonic oscillator linearly coupled to a harmonic heat bath, which is dragged by an external agent. Coupling with the bath makes the dynamics dissipative. Since we do not assume anything about the spectral nature of the harmonic bath the derivation is not restricted only to the Ohmic bath, rather it is more general, for a non-Ohmic bath. We also derive expressions of the average work done and the variance of the work done in terms of the two-time correlation function of the fluctuations of the position of the harmonic oscillator. In the case of an Ohmic bath, we use these relations to evaluate the average work done and the variance of the work done analytically and verify the transient state work fluctuation theorem quantitatively. Actually these relations have far-reaching consequences. They can be used to numerically evaluate the average work done and the variance of the work done in the case of a non-Ohmic bath when analytical evaluation is not possible.
Resumo:
We consider models for the rheology of dense, slowly deforming granular materials based of classical and Cosserat plasticity, and their viscoplastic extensions that account for small but finite particle inertia. We determine the scale for the viscosity by expanding the stress in a dimensionless parameter that is a measure of the particle inertia. We write the constitutive relations for classical and Cosserat plasticity in stress-explicit form. The viscoplastic extensions are made by adding a rate-dependent viscous stress to the plasticity stress. We apply the models to plane Couette flow, and show that the classical plasticity and viscoplasticity models have features that depart from experimental observations; the prediction of the Cosserat viscoplasticity model is qualitatively similar to that of Cosserat plasticity, but the viscosities modulate the thickness of the shear layer.
Resumo:
1H NMR spin-lattice relaxation time (T1) studies have been carried out in the temperature range 100 K to 4 K, at two Larmor frequencies 11.4 and 23.3 MHz, in the mixed system of betaine phosphate and glycine phosphite (BPxGPI(1-x)), to study the effects of disorder on the proton group dynamics. Analysis of T1 data indicates the presence of a number of inequivalent methyl groups and a gradual transition from classical reorientations to quantum tunneling rotations. At lower temperatures, microstructural disorder in the local environments of the methyl groups, result in a distribution in the activation energy (Ea) and the torsional energy gap (E01). For certain values of x, the magnetisation recovery shows biexponential behaviour at lower temperatures.
Resumo:
It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.
Resumo:
Growing crystals with selected structure and preferred orientations oil seed substrates is crucial for a wide variety of applications. Although epitaxial or textured film growth of a polymorph whose structure resembles the seed crystal structure is well-known, growing oriented nanocrystal arrays or more than one polymorph, selectable one at a time, from the same seed has not been realized. Here, we demonstrate for the first time the exclusive growth of oriented nanocrystal arrays of two titania polymorphs from a titanate crystal by chemically activating respective polymorph-mimicking crystallographic facets in the seed. The oriented titania nanocrystal arrays exhibit significantly higher photocatalytic activity than randomly oriented polymorphs. Our approach of chemically sculpting oriented nanocrystal polymorph arrays could be adapted to other materials systems to obtain novel properties.
Metal-organic framework structures - how closely are they related to classical inorganic structures?
Resumo:
Metal-organic frameworks (MOFs) have emerged as an important family of compounds for which new properties are increasingly being found. The potential for such compounds appears to be immense, especially in catalysis, sorption and separation processes. In order to appreciate the properties and to design newer frameworks it is necessary to understand the structures from a fundamental perspective. The use of node, net and vertex symbols has helped in simplifying some of the complex MOF structures. Many MOF structures are beginning to be described as derived from inorganic structures. In this tutorial review, we have provided the basics of the node, the net and the vertex symbols and have explained some of the MOF structures. In addition, we have also attempted to provide some leads towards designing newer structures/topologies.
Resumo:
Monopoles which are sources of non-Abelian magnetic flux are predicted by many models of grand unification. It has been argued elsewhere that a generic transformation of the "unbroken" symmetry group H cannot be globally implemented on such monopoles for reasons of topology. In this paper, we show that similar topological obstructions are encountered in the mechanics of a test particle in the field of these monopoles and that the transformations of H cannot all be globally implemented as canonical transformations. For the SU(5) model, if H is SU(3)C×U(1)em, a consequence is that color multiplets are not globally defined, while if H is SU(3)C×SU(2)WS×U(1)Y, the same is the case for both color and electroweak multiplets. There are, however, several subgroups KT, KT′,… of H which can be globally implemented, with the transformation laws of the observables differing from group to group in a novel way. For H=SU(3)C×U(1)em, a choice for KT is SU(2)C×U(1)em, while for H=SU(3)C×SU(2)WS×U(1)Y, a choice is SU(2)C×U(1)×U(1)×U(1). The paper also develops the differential geometry of monopoles in a form convenient for computations.
Resumo:
We demonstrate the phenomenon stated in the title, using for illustration a two-dimensional scalar-field model with a triple-well potential {fx837-1}. At the classical level, this system supports static topological solitons with finite energy. Upon quantisation, however, these solitons develop infinite energy, which cannot be renormalised away. Thus this quantised model has no soliton sector, even though classical solitons exist. Finally when the model is extended supersymmetrically by adding a Majorana field, finiteness of the soliton energy is recovered.
Resumo:
The probability distribution for the displacement x of a particle moving in a one-dimensional continuum is derived exactly for the general case of combined static and dynamic gaussian randomness of the applied force. The dynamics of the particle is governed by the high-friction limit of Brownian motion discussed originally by Einstein and Smoluchowski. In particular, the mean square displacement of the particle varies as t2 for t to infinity . This ballistic motion induced by the disorder does not give rise to a 1/f power spectrum, contrary to recent suggestions based on the above dynamical model.
Resumo:
We explore the semi-classical structure of the Wigner functions ($\Psi $(q, p)) representing bound energy eigenstates $|\psi \rangle $ for systems with f degrees of freedom. If the classical motion is integrable, the classical limit of $\Psi $ is a delta function on the f-dimensional torus to which classical trajectories corresponding to ($|\psi \rangle $) are confined in the 2f-dimensional phase space. In the semi-classical limit of ($\Psi $ ($\hslash $) small but not zero) the delta function softens to a peak of order ($\hslash ^{-\frac{2}{3}f}$) and the torus develops fringes of a characteristic 'Airy' form. Away from the torus, $\Psi $ can have semi-classical singularities that are not delta functions; these are discussed (in full detail when f = 1) using Thom's theory of catastrophes. Brief consideration is given to problems raised when ($\Psi $) is calculated in a representation based on operators derived from angle coordinates and their conjugate momenta. When the classical motion is non-integrable, the phase space is not filled with tori and existing semi-classical methods fail. We conjecture that (a) For a given value of non-integrability parameter ($\epsilon $), the system passes through three semi-classical regimes as ($\hslash $) diminishes. (b) For states ($|\psi \rangle $) associated with regions in phase space filled with irregular trajectories, ($\Psi $) will be a random function confined near that region of the 'energy shell' explored by these trajectories (this region has more than f dimensions). (c) For ($\epsilon \neq $0, $\hslash $) blurs the infinitely fine classical path structure, in contrast to the integrable case ($\epsilon $ = 0, where $\hslash $ )imposes oscillatory quantum detail on a smooth classical path structure.
Resumo:
We consider N particles interacting pairwise by an inverse square potential in one dimension (Calogero-Sutherland-Moser model). For a system placed in a harmonic trap, its classical partition function for the repulsive regime is recognised in the literature. We start by presenting a concise re-derivation of this result. The equation of state is then calculated both for the trapped and the homogeneous gas. Finally, the classical limit of Wu's distribution function for fractional exclusion statistics is obtained and we re-derive the classical virial expansion of the homogeneous gas using this distribution function.
Resumo:
Polarized scattering in spectral lines is governed by a 4; 4 matrix that describes how the Stokes vector is scattered and redistributed in frequency and direction. Here we develop the theory for this redistribution matrix in the presence of magnetic fields of arbitrary strength and direction. This general magnetic field case is called the Hanle- Zeeman regime, since it covers both of the partially overlapping weak- and strong- field regimes in which the Hanle and Zeeman effects dominate the scattering polarization. In this general regime, the angle-frequency correlations that describe the so-called partial frequency redistribution (PRD) are intimately coupled to the polarization properties. We develop the theory for the PRD redistribution matrix in this general case and explore its detailed mathematical properties and symmetries for the case of a J = 0 -> 1 -> 0 scattering transition, which can be treated in terms of time-dependent classical oscillator theory. It is shown how the redistribution matrix can be expressed as a linear superposition of coherent and noncoherent parts, each of which contain the magnetic redistribution functions that resemble the well- known Hummer- type functions. We also show how the classical theory can be extended to treat atomic and molecular scattering transitions for any combinations of quantum numbers.
Resumo:
It is shown that the mass of the electron could be conceived as the energy associated with its spinning motion and the angular velocity is such that the linear velocities at the surface exceed the velocity of light; this in fact accounts for its stability against the centrifugal forces in the core region.
Resumo:
A microscopic theory of equilibrium solvation and solvation dynamics of a classical, polar, solute molecule in dipolar solvent is presented. Density functional theory is used to explicitly calculate the polarization structure around a solvated ion. The calculated solvent polarization structure is different from the continuum model prediction in several respects. The value of the polarization at the surface of the ion is less than the continuum value. The solvent polarization also exhibits small oscillations in space near the ion. We show that, under certain approximations, our linear equilibrium theory reduces to the nonlocal electrostatic theory, with the dielectric function (c(k)) of the liquid now wave vector (k) dependent. It is further shown that the nonlocal electrostatic estimate of solvation energy, with a microscopic c(k), is close to the estimate of linearized equilibrium theories of polar liquids. The study of solvation dynamics is based on a generalized Smoluchowski equation with a mean-field force term to take into account the effects of intermolecular interactions. This study incorporates the local distortion of the solvent structure near the ion and also the effects of the translational modes of the solvent molecules.The latter contribution, if significant, can considerably accelerate the relaxation of solvent polarization and can even give rise to a long time decay that agrees with the continuum model prediction. The significance of these results is discussed.