4 resultados para Scrambling systems (Telecommunication)
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we present a decentralized dynamic load scheduling/balancing algorithm called ELISA (Estimated Load Information Scheduling Algorithm) for general purpose distributed computing systems. ELISA uses estimated state information based upon periodic exchange of exact state information between neighbouring nodes to perform load scheduling. The primary objective of the algorithm is to cut down on the communication and load transfer overheads by minimizing the frequency of status exchange and by restricting the load transfer and status exchange within the buddy set of a processor. It is shown that the resulting algorithm performs almost as well as a perfect information algorithm and is superior to other load balancing schemes based on the random sharing and Ni-Hwang algorithms. A sensitivity analysis to study the effect of various design parameters on the effectiveness of load balancing is also carried out. Finally, the algorithm's performance is tested on large dimensional hypercubes in the presence of time-varying load arrival process and is shown to perform well in comparison to other algorithms. This makes ELISA a viable and implementable load balancing algorithm for use in general purpose distributed computing systems.
Resumo:
High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.
Resumo:
Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.
Resumo:
Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.