9 resultados para Schwinger-Dyson, Equações de

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An anomalous gauge theory can be reformulated in a gauge invariant way without any change in its physical content. This is demonstrated here for the exactly soluble chiral Schwinger model. Our gauge invariant version is very different from the Faddeev-Shatashvili proposal [L.D. Faddeev and S.L. Shatashvili, Theor. Math. Phys. 60 (1984) 206] and involves no additional gauge-group-valued fields. The status of the "gauge" A0=0 sometimes used in anomalous theories is also discussed and justified in our reformulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given a classical dynamical theory with second-class constraints, it is sometimes possible to construct another theory with first-class constraints, i.e., a gauge-invariant one, which is physically equivalent to the first theory. We identify some conditions under which this may be done, explaining the general principles and working out several examples. Field theoretic applications include the chiral Schwinger model and the non-linear sigma model. An interesting connection with the work of Faddeev and Shatashvili is pointed out.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intersection of the conifold z(1)(2) + z(2)(2) + z(3)(2) = 0 and S-5 is a compact 3-dimensional manifold X-3. We review the description of X-3 as a principal U(1) bundle over S-2 and construct the associated monopole line bundles. These monopoles can have only even integers as their charge. We also show the Kaluza-Klein reduction of X-3 to S-2 provides an easy construction of these monopoles. Using the analogue of the Jordan-Schwinger map, our techniques are readily adapted to give the fuzzy version of the fibration X-3 -> S-2 and the associated line bundles. This is an alternative new realization of the fuzzy sphere S-F(2) and monopoles OH it.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intersection of the ten-dimensional fuzzy conifold Y-F(10) with S-F(5) x S-F(5) is the compact eight-dimensional fuzzy space X-F(8). We show that X-F(8) is (the analogue of) a principal U(1) x U(1) bundle over fuzzy SU(3) / U(1) x U(1)) ( M-F(6)). We construct M-F(6) using the Gell-Mann matrices by adapting Schwinger's construction. The space M-F(6) is of relevance in higher dimensional quantum Hall effect and matrix models of D-branes. Further we show that the sections of the monopole bundle can be expressed in the basis of SU(3) eigenvectors. We construct the Dirac operator on M-F(6) from the Ginsparg-Wilson algebra on this space. Finally, we show that the index of the Dirac operator correctly reproduces the known results in the continuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a new method for studying universality of random matrices. Let T-n be the Jacobi matrix associated to the Dyson beta ensemble with uniformly convex polynomial potential. We show that after scaling, Tn converges to the stochastic Airy operator. In particular, the top edge of the Dyson beta ensemble and the corresponding eigenvectors are universal. As a byproduct, these ideas lead to conjectured operator limits for the entire family of soft edge distributions. (C) 2015 Wiley Periodicals, Inc.