24 resultados para School-to-work transition

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sr2FeMoO6 oxides exhibit a half-metallic ferromagnetic (HM-FM) ground state and peculiar magnetic and magnetotransport properties, which are interesting for applications in the emerging field of spintronics and attractive for fundamental research in the field of heavily correlated electron systems. Sr2FeWO6 is an insulator with an antiferromagnetic (I-AFM) ground state. The solid solutions Sr2FeMoxW1-xO6 also have peculiar properties-W doping enhances chemical order which allows stabilization of the HM-FM state; as the W content exceeds a certain value a metal to insulator transition (MIT) occurs. The role of W in determining the physical properties of Sr2FeMoxW1-xO6 systems has been a matter of intense investigation. This work deals with the problem of the structural and electronic changes related to the MIT from a local perspective by means of x-ray absorption spectroscopy (XAS). This technique allows one to probe in detail the local structure and electronic modifications around selected absorber ions (W, Mo, Fe and Sr in our case). The results of XAS analysis in the whole composition range (0 <= x <= 1), in the near edge (XANES) and extended (EXAFS) regions, demonstrate an abrupt change of the local structure around the Fe and Mo sites at the critical composition, x(c). This change represents the microstructural counterpart associated with the MIT. Conversely, the local structure and electronic configuration of W ions remain unaltered in the whole composition range, suggesting indirect participation of W in the MIT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study to ascertain the ductile-to-brittle transition (DBT) in a bulk metallic glass (BMG) was conducted. Results of the impact toughness tests conducted at various temperatures on as-cast and structurally relaxed Zr-based BMG show a sharp DBT. The DBT temperature was found to be sensitive to the free-volume content in the alloy. Possible factors that result in the DBT were critically examined. It was found that the postulate of a critical free volume required for the amorphous alloy to exhibit good toughness cannot rationalize the experimental trends. Likewise, the Poisson's ratio-toughness correlations, which suggest a critical Poisson's ratio above which all glasses are tough, were found not to hold good. Viscoplasticity theories, developed using the concept of shear transformation zones and which describe the temperature and strain rate dependence of the crack-tip plasticity in BMGs, appear to be capable of capturing the essence of the experiments. Our results highlight the need for a more generalized theory to understand the origins of toughness in BMGs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spectroscopic studies on pd(CG)3 and pd(GC)3 have been carried out to elucidate the sequence dependence and effect of free 5'-phosphate on the B to Z transition. Unlike d(CG)3, pd(CG)3 fails to undergo salt-induced B to Z transition at ambient temperature. Model building studies have been carried out to determine the inhibitory role of the 5'-phosphate group, but have been unsuccessful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metal to insulator transition in the charge-transfer NiS2-xSex compound has been investigated through infrared reflectivity. Measurements performed by applying pressure to pure NiS2 (lattice contraction) and by Se alloying (lattice expansion) reveal that in both cases an anomalous metallic state is obtained. We find that optical results are not compatible with the linear Se-alloying vs pressure-scaling relation previously established through transport, thus pointing out the substantially different microscopic origin of the two transitions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the effect of hydrostatic pressure on the incommensurate lattice modulation at 153 K in K3Cu8S6, electrical resistivity measurements are done at 1.0 GPa, 1.5 GPa and 2.2 GPa. The sharp increase in resistance at 2.2 GPa is attributed to the incommensurate to commensurate transition. This is further confirmed by the non-linear I–V characteristics at 2.2 GPa showing the driven motion of the commensurate charge density wave in the presence of an external electric field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligonucleotides containing alternating purines-pyrimidines with AT base pairs have been shown to exist in the Z-form preferably in solid state. We report that oligodeoxyribonucleotides with GG, TG and CA interruptions in their alternating CG sequences can undergo B to Z transition in solution in the absence of any chemical modification or topological constraint. The sequences, d(CGCGCGGCGCGC) and d(CGTGCGCACG) have been synthesised and shown to adopt Z- conformation in presence of millimolar concentrations of Ni2+ under low water activity conditions. Significance of GG, TG and CA interruptions in the B to Z transition is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model system capable of exhibiting both superconductivity of conduction electrons and “antiferromagnetic” order of site localised electrons is studied. Coexistence of both types of order seems a possibility and the model predicts a re-entrant behaviour of the transition temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ductile-to-brittle transition temperature (DBTT) of a free-standing Pt-aluminide (PtAl) bondcoat was determined using the microtensile testing method and the effect of strain rate variation, in the range 10(-5) to 10(-1) s(-1), on the DBTT studied. The DBTT increased appreciably with the increase in strain rate. The activation energy determined for brittle-to-ductile transition, suggested that such transition is most likely associated with vacancy diffusion. Climb of aOE (c) 100 > dislocations observed in analysis of dislocation structure using a transmission electron microscope (TEM) supported the preceding mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brittle-to-ductile-transition-temperature (BDTT) of free-standing Pt-aluminide (PtAl) coating specimens, i.e. stand-alone coating specimens without any substrate, was determined by micro-tensile testing technique. The effect of Pt content, expressed in terms of the thickness of initial electro-deposited Pt layer, on the BDTT of the coating has been evaluated and an empirical correlation drawn. Increase in the electrodeposited Pt layer thickness from nil to 10 mu m was found to cause an increase in the BDTT of the coating by about 100 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient-condition Raman spectra were collected in the strongly correlated NiS(1-x)Se(x) pyrite (0 <= x <= 1.2). Two samples (x = 0 and x = 0.55) were studied as a function of pressure up to 10 GPa, and for the x = 0.55 sample the pressure dependence of the infrared reflectivity was also measured (0-10 GPa). This gave a complete picture of the optical response of that system on approaching the metallic state both by application of pressure and/or by Se alloying, which corresponds to a volume expansion. A peculiar nonmonotonic (V-shaped) volume dependence was found for the quasiparticle spectral weight of both pure and Se-doped compounds. In the x = 0.55 sample the vibrational frequencies of the chalcogen dimer show an anomalous volume dependence on entering the metallic phase. The abrupt softening observed, particularly significant for the Se-Se pair, indicates the relevant role of the softness of the Se-Se bond as previously suggested by theoretical calculations.