2 resultados para School head teacher

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of a “mutualistic teacher” is introduced for unsupervised learning of the mean vectors of the components of a mixture of multivariate normal densities, when the number of classes is also unknown. The unsupervised learning problem is formulated here as a multi-stage quasi-supervised problem incorporating a cluster approach. The mutualistic teacher creates a quasi-supervised environment at each stage by picking out “mutual pairs” of samples and assigning identical (but unknown) labels to the individuals of each mutual pair. The number of classes, if not specified, can be determined at an intermediate stage. The risk in assigning identical labels to the individuals of mutual pairs is estimated. Results of some simulation studies are presented.