134 resultados para Scalar fields
em Indian Institute of Science - Bangalore - Índia
Resumo:
Visualizing symmetric patterns in the data often helps the domain scientists make important observations and gain insights about the underlying experiment. Detecting symmetry in scalar fields is a nascent area of research and existing methods that detect symmetry are either not robust in the presence of noise or computationally costly. We propose a data structure called the augmented extremum graph and use it to design a novel symmetry detection method based on robust estimation of distances. The augmented extremum graph captures both topological and geometric information of the scalar field and enables robust and computationally efficient detection of symmetry. We apply the proposed method to detect symmetries in cryo-electron microscopy datasets and the experiments demonstrate that the algorithm is capable of detecting symmetry even in the presence of significant noise. We describe novel applications that use the detected symmetry to enhance visualization of scalar field data and facilitate their exploration.
Resumo:
The complexity in visualizing volumetric data often limits the scope of direct exploration of scalar fields. Isocontour extraction is a popular method for exploring scalar fields because of its simplicity in presenting features in the data. In this paper, we present a novel representation of contours with the aim of studying the similarity relationship between the contours. The representation maps contours to points in a high-dimensional transformation-invariant descriptor space. We leverage the power of this representation to design a clustering based algorithm for detecting symmetric regions in a scalar field. Symmetry detection is a challenging problem because it demands both segmentation of the data and identification of transformation invariant segments. While the former task can be addressed using topological analysis of scalar fields, the latter requires geometry based solutions. Our approach combines the two by utilizing the contour tree for segmenting the data and the descriptor space for determining transformation invariance. We discuss two applications, query driven exploration and asymmetry visualization, that demonstrate the effectiveness of the approach.
Resumo:
A new generalisation of Einstein’s theory is proposed which is invariant under conformal mappings. Two scalar fields are introduced in addition to the metric tensor field, so that two special choices of gauge are available for physical interpretation, the ‘Einstein gauge’ and the ‘atomic gauge’. The theory is not unique but contains two adjustable parameters ζ anda. Witha=1 the theory viewed from the atomic gauge is Brans-Dicke theory (ω=−3/2+ζ/4). Any other choice ofa leads to a creation-field theory. In particular the theory given by the choicea=−3 possesses a cosmological solution satisfying Dirac’s ‘large numbers’ hypothesis.
Resumo:
Study of symmetric or repeating patterns in scalar fields is important in scientific data analysis because it gives deep insights into the properties of the underlying phenomenon. Though geometric symmetry has been well studied within areas like shape processing, identifying symmetry in scalar fields has remained largely unexplored due to the high computational cost of the associated algorithms. We propose a computationally efficient algorithm for detecting symmetric patterns in a scalar field distribution by analysing the topology of level sets of the scalar field. Our algorithm computes the contour tree of a given scalar field and identifies subtrees that are similar. We define a robust similarity measure for comparing subtrees of the contour tree and use it to group similar subtrees together. Regions of the domain corresponding to subtrees that belong to a common group are extracted and reported to be symmetric. Identifying symmetry in scalar fields finds applications in visualization, data exploration, and feature detection. We describe two applications in detail: symmetry-aware transfer function design and symmetry-aware isosurface extraction.
Resumo:
Identifying symmetry in scalar fields is a recent area of research in scientific visualization and computer graphics communities. Symmetry detection techniques based on abstract representations of the scalar field use only limited geometric information in their analysis. Hence they may not be suited for applications that study the geometric properties of the regions in the domain. On the other hand, methods that accumulate local evidence of symmetry through a voting procedure have been successfully used for detecting geometric symmetry in shapes. We extend such a technique to scalar fields and use it to detect geometrically symmetric regions in synthetic as well as real-world datasets. Identifying symmetry in the scalar field can significantly improve visualization and interactive exploration of the data. We demonstrate different applications of the symmetry detection method to scientific visualization: query-based exploration of scalar fields, linked selection in symmetric regions for interactive visualization, and classification of geometrically symmetric regions and its application to anomaly detection.
Resumo:
Lifted turbulent jet diffusion flame is simulated using Conditional Moment Closure (CMC). Specifically, the burner configuration of Cabra et al. [R. Cabra, T. Myhrvold, J.Y. Chen. R.W. Dibble, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29 (2002) 1881-1887] is chosen to investigate H-2/N-2 jet flame supported by a vitiated coflow of products of lean H-2/air combustion. A 2D, axisymmetric flow-model fully coupled with the scalar fields, is employed. A detailed chemical kinetic scheme is included, and first order CIVIC is applied. Simulations are carried out for different jet velocities and coflow temperatures (T-c) The predicted liftoff generally agrees with experimental data, as well as joint-PDF results. Profiles of mean scalar fluxes in the mixture fraction space, for T-c = 1025 and 1080 K reveal that (1) Inside the flame zone, the chemical term balances the molecular diffusion term, and hence the Structure is of a diffusion flamelet for both cases. (2) In the pre-flame zone, the structure depends on the coflow temperature: for the 1025 K case, the chemical term being small, the advective term balances the axial turbulent diffusion term. However, for the 1080 K case. the chemical term is large and balances the advective term, the axial turbulent diffusion term being small. It is concluded that, lift-off is controlled (a) by turbulent premixed flame propagation for low coflow temperature while (b) by autoignition for high coflow temperature. (C) 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.
Resumo:
A method is developed for demonstrating how solitons with some internal periodic motion may emerge as elementary excitations in the statistical mechanics of field systems. The procedure is demonstrated in the context of complex scalar fields which can, for appropriate choices of the Lagrangian, yield charge-carrying solitons with such internal motion. The derivation uses the techniques of the steepest-descent method for functional integrals. It is shown that, despite the constraint of some fixed total charge, a gaslike excitation of such charged solitons does emerge.
Resumo:
By using a method originally due to Okubo we calculate the momentum-space superpropagator for a nonpolynomial field U(x)=1 / [1+fφ(x)] both for a massless and a massive neutral scalar φ(x) field. For the massless case we obtain a representation that resembles the weighted superposition of propagators for the exchange of a group of scalar fields φ(x) as is intuitively expected. The exact equivalence of this representation with the propagator function which has been obtained earlier through the use of the Fourier transform of a generalized function is established. For the massive case we determine the asymptotic form of the superpropagator.
Resumo:
We introduce a variation density function that profiles the relationship between multiple scalar fields over isosurfaces of a given scalar field. This profile serves as a valuable tool for multifield data exploration because it provides the user with cues to identify interesting isovalues of scalar fields. Existing isosurface-based techniques for scalar data exploration like Reeb graphs, contour spectra, isosurface statistics, etc., study a scalar field in isolation. We argue that the identification of interesting isovalues in a multifield data set should necessarily be based on the interaction between the different fields. We demonstrate the effectiveness of our approach by applying it to explore data from a wide variety of applications.
Resumo:
It is shown that the euclideanized Yukawa theory, with the Dirac fermion belonging to an irreducible representation of the Lorentz group, is not bounded from below. A one parameter family of supersymmetric actions is presented which continuously interpolates between the N = 2 SSYM and the N = 2 supersymmetric topological theory. In order to obtain a theory which is bounded from below and satisfies Osterwalder-Schrader positivity, the Dirac fermion should belong to a reducible representation of the Lorentz group and the scalar fields have to be reinterpreted as the extra components of a higher dimensional vector field.
Resumo:
We introduce a multifield comparison measure for scalar fields that helps in studying relations between them. The comparison measure is insensitive to noise in the scalar fields and to noise in their gradients. Further, it can be computed robustly and efficiently. Results from the visual analysis of various data sets from climate science and combustion applications demonstrate the effective use of the measure.
Resumo:
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.
Resumo:
Topological methods have been successfully used to identify features in scalar fields and to measure their importance. In this paper, we define a notion of topological saliency that captures the relative importance of a topological feature with respect to other features in its local neighborhood. Features are identified by extreme points of an input scalar field, and their importance measured by the so-called topological persistence. Computing the topological saliency of all features for varying neighborhood sizes results in a saliency plot that serves as a summary of relative importance of all topological features. We develop a convenient tool for users to interactively select and inspect features using the saliency plot. We demonstrate the use of topological saliency together with the rich information encoded in the saliency plot in several applications, including key feature identification, scalar field simplification, and feature clustering. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Upper bounds at the weak scale are obtained for all lambda(ij)lambda(im) type product couplings of the scalar leptoquark model which may affect K-0 - (K) over bar (0), B-d - (B) over bar (d), and B-s - (B) over bar (s) mixing, as well as leptonic and semileptonic K and B decays. Constraints are obtained for both real and imaginary parts of the couplings. We also discuss the role of leptoquarks in explaining the anomalously large CP-violating phase in B-s - (B) over bar (s) mixing.