145 resultados para Sandwich beams
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.
Resumo:
The three-point bending behavior of sandwich beams made up of jute epoxy skins and piecewise linear functionally graded (FG) rubber core reinforced with fly ash filler is investigated. This work studies the influence of the parameters such as weight fraction of fly ash, core to thickness ratio, and orientation of jute on specific bending modulus and strength. The load displacement response of the sandwich is traced to evaluate the specific modulus and strength. FG core samples are prepared by using conventional casting technique and sandwich by hand layup. Presence of gradation is quantified experimentally. Results of bending test indicate that specific modulus and strength are primarily governed by filler content and core to sandwich thickness ratio. FG sandwiches with different gradation configurations (uniform, linear, and piecewise linear) are modeled using finite element analysis (ANSYS 5.4) to evaluate specific strength which is subsequently compared with the experimental results and the best gradation configuration is presented. POLYM. COMPOS., 32:1541-1551, 2011. (C) 2011 Society of Plastics Engineers
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.
Resumo:
We present two six-parameter families of anisotropic Gaussian Schell-model beams that propagate in a shape-invariant manner, with the intensity distribution continuously twisting about the beam axis. The two families differ in the sense or helicity of this beam twist. The propagation characteristics of these shape-invariant beams are studied, and the restrictions on the beam parameters that arise from the optical uncertainty principle are brought out. Shape invariance is traced to a fundamental dynamical symmetry that underlies these beams. This symmetry is the product of spatial rotation and fractional Fourier transformation.
Resumo:
Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.
Resumo:
The multiphoton inverse bremsstrahlung absorption of two intense electromagnetic beams passing through a magnetized plasma is studied. The rate of absorption of electromagnetic energy by the electrons is calculated by deriving a kinetic equation for the electrons. It is found that the absorption enhances when the frequency of one electromagnetic beam is more, and that of the other electromagnetic beam is less, than the electron-cyclotron frequency. A possible application to extragalactic radio sources is discussed.
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
Timoshenko's shear deformation theory is widely used for the dynamical analysis of shear-flexible beams. This paper presents a comparative study of the shear deformation theory with a higher order model, of which Timoshenko's shear deformation model is a special case. Results indicate that while Timoshenko's shear deformation theory gives reasonably accurate information regarding the set of bending natural frequencies, there are considerable discrepancies in the information it gives regarding the mode shapes and dynamic response, and so there is a need to consider higher order models for the dynamical analysis of flexure of beams.
Resumo:
The inclusion of fibers into a matrix over only a partial thickness of the beam is regarded as partially fiber reinforcing a beam. This concept is fully invoked in the present investigation. A tensile strain enhancement factor, t, as determined by a direct tension test, forms a convenient engineering parameter that takes care of the influence of the aspect ratio and volume fraction of the given type of fiber. The appropriate thickness of the beam section to be reinforced with fibers is computed using the above parameter. Necessary analytical expressions were developed to compute the moment enhancement factor associated with different values of the parameter, t. The validity of the approach was experimentally demonstrated. Practically similar deflection patterns for fully and partially fibrous sections were observed. The applicability of the method developed in practical situations, such as the design of airfield and highway pavements with fiber conretes, is cited.
Resumo:
Anisotropic gaussian beams are obtained as exact solutions to the parabolic wave equation. These beams have a quadratic phase front whose principal radii of curvature are non-degenerate everywhere. It is shown that, for the lowest order beams, there exists a plane normal to the beam axis where the intensity distribution is rotationally symmetric about the beam axis. A possible application of these beams as normal modes of laser cavities with astigmatic mirrors is noted.
Resumo:
Abstract is not available.
Resumo:
In a beam whose depth is comparable to its span, the distribution of bending and shear stresses differs appreciably from those given by the ordinary flexural theory. In this paper, a general solution for the analysis of a rectangular, single-scan beam, under symmetrical loading is developed. The Multiple Fourier procedure is employed using four series by which it has been possible to satisfy all boundary and the resulting relation among the co-efficient are derives.
Resumo:
The use of the multiple Fourier method to analyses the stress distribution in the and regions of as a post-tensioned prestressed concrete beam had shown. The multiple Fourier method demonstrated have is a relatively new method for solving those problems for which the “Saint Vansant principle” is not applicable, The actual three-dimensional problem and a two-dimensional simplified representation of it are treated. The two-dimensional case is treated first and rather completely to gain further experience with multiple Fourier procedure, the appropriate Galerkin Vector for the three-dimensional case is found and the required relations between the arbitrary functions are stated.