214 resultados para SYNTHESIZED POLYANILINE
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this study, we report an approach for the adsorption and desorption of anionic (sulfonated) dyes from aqueous solution by doped polyaniline. In this study, we have synthesized PANI with two dopants, namely, p-toluenesulfonic acid (PTSA) and camphorsulfonic acid (CSA), and used these to adsorb various dyes. It was found that the doped PANI selectively adsorbs anionic dyes and does not adsorb cationic dyes. The adsorption of anionic dyes causes the variation in electrical conductivity of PANI, indicating its potential as a conductometric sensor for these dyes at very low concentration. The adsorbed dyes were desorbed from the polymer by using a basic aqueous solution. The adsorption and desorption kinetics of the dye in the presence of doped PANI were also determined.
Resumo:
High dielectric constant (ca. 2.4 x 10(6) at 1 kHz) nanocomposite of polyaniline (PANI)/CaCu3Ti4O12 (CCTO) was synthesized using a simple procedure involving in situ polymerization of aniline in dil. HCl. The PANI and the composite were subjected to X-ray diffraction, Fourier transform infrared, thermo gravimetric, scanning electron microscopy and transmission electron microscopy analyses. The presence of the nanocrystallites of CCTO embedded in the nanofibers of PANI matrix was established by TEM. Frequency dependent characteristics of the dielectric constant. dielectric loss and AC conductivity were studied for the PANI and the composites. The dielectric constant increased as the CCTO content increased in PANI but decreased with increasing frequency (100 Hz-1 MHz) of measurement. The dielectric loss was two times less than the value obtained for pure PANI around 100 Hz. The AC conductivity increased slightly up to 2 kHz as the CCTO content increased in the PANI which was attributed to the polarization of the charge carriers.
Resumo:
Polyaniline salts have been synthesized by chemical oxidative polymerization of aniline in the presence of phenoxy acetic acid and its two derivatives using emulsion method at room temperature and characterized by different techniques such as infrared, H-1 and C-13 NMR, UV-visible spectroscopy, SEM, wide angle X-ray diffractograms and conductivity measurements. These polyaniline salts have the desirable property of high solubility for processibility in solvents such as DNIF, DMSO and a mixture of CHCl3 and acetone and they exhibit fairly good conductivity of similar to 3.0 x 10(-3) S cm(-1). The variations in solubility, conductivity and morphology with the protonating strength of the dopants are examined.
Resumo:
Polyaniline/ZnFe2O4 nanocomposites were synthesized by a simple and inexpensive one-step in situ polymerization method in the presence of ZnFe2O4 nanoparticles. The structural, morphological, and electrical properties of the samples were characterized by wide angle X-ray diffraction (WAXD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). WAXD and SEM revealed the formation of polyaniline/ZnFe2O4 nanocomposites. Infrared spectroscopy indicated that there was some interaction between the ZnFe2O4 nanoparticles and polyaniline. The dc electrical conductivity measurements were carried in the temperature range of 80 to 300 K. With increase in the doping concentration of ZnFe2O4, the conductivity of the nanocomposites found to be decreasing from 5.15 to 0.92 Scm(-1) and the temperature dependent resistivity follows ln rho(T) similar to T-1/2 behavior. The nanocomposites (80 wt % of ZnFe2O4) show a more negative magnetoresistance compared with that of pure polyaniline (PANI). These results suggest that the interaction between the polymer matrix PANI and zinc nanoparticles take place in these nanocomposites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 120: 2856-2862, 2011
Resumo:
Polyaniline functionalized with imidazole as strategically designed receptor group in its backbone was synthesized for copper binding. The synthesized polymer has been characterized using FTIR, NMR, and UV-Vis spectroscopic techniques. The addition of copper (II) to the polymer distinctly changes the properties such as crystallinity, molecular weight, aggregation, and electronic properties. XRD, DLS, SEM, and four-point probe techniques have been used for study of these changes. It is observed that the secondary ion generated as a result of copper coordination results in the doping of the polyaniline backbone, which enhances the conductivity by one order of magnitude. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci 123: 526-534, 2012
Resumo:
High molecular weight polyaniline (PANI) was synthesized by a combined procedure incorporating various synthesis methods. Temperature and open circuit potential of the reaction mixture were collected to monitor the reaction progress. The polymer is characterized by various techniques including gel permeation chromatography, dynamic light scattering, infrared spectroscopy, solid-state nuclear magnetic resonance, and differential scanning calorimetry for elucidating the molecular architecture obtained by this method. As-synthesized PANI was found to possess high molecular weight, reduced branching, reduced cross-linking, and to predominantly consist of linear polymer chains. This polymer was also found to be more stable in solution form. JV characteristics of as-synthesized PANI films indicate a high current density which is due to increased free pathways and less traps for the charge transport to occur in PANI films. POLYM. ENG. SCI., 2012. (C) 2012 Society of Plastics Engineers
Resumo:
The Cobalt ferrite (CoFe2O4) powders were synthesized by Co-precipitation method. The as prepared ferrite powders were incorporated into a polyaniline matrix at various volumetric ratios. The as prepared composites of ferrite and polyaniline powders were characterized using X-ray diffraction (XRD), transmission electron microscope (TEM). The particle size of CoFe2O4 is found to be 20 nm. The saturation magnetization (M-s) of all the composites was found to be decreasing with decrease of ferrite content, while coercivity (H-c) remained at the value corresponding to pure cobalt ferrite nanopowders. The complex permittivity (epsilon' and epsilon `') and permeability (mu' and mu `') of composite samples were measured in the range of 1 MHz to 1.1 GHz. The value of epsilon' and mu' found to be increased with ferrite volume concentration.
Resumo:
Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline (PANI) due to its wide application in different fields. In the present work nickel ferrite (NiFe2O4) nanoparticles were prepared by sol-gel citrate-nitrate method with an average size of 21.6nm. PANI/NiFe2O4 nanoparticles were synthesized by a simple general and inexpensive in-situ polymerization in the presence of NiFe2O4 nanoparticles. The effects of NiFe2O4 nanoparticles on the dc-electrical properties of polyaniline were investigated. The structural components in the nanocomposites were identified from Fourier Transform Infrared (FTIR) spectroscopy. The crystalline phase of nanocomposites was characterized by X-Ray Diffraction (XRD). The Scanning Electron Micrograph (SEM) reveals that there was some interaction between the NiFe2O4 particles and polyaniline and the nanocomposites are composed of polycrystalline ferrite nanoparticles and PANI. The dc conductivity of polyaniline/NiFe2O4 nanocomposites have been measured as a function of temperature in the range of 80K to 300K. It is observed that the room temperature conductivity sigma(RT) decreases with increase in the relative content of NiFe2O4. The experimental data reveals that the resistivity increases for all composites with decrease of temperature exhibiting semiconductor behaviour.
Resumo:
Conducting polymer/ferrite nanocomposites with an organized structure provide a new functional hybrid between organic and inorganic materials. The most popular among the conductive polymers is the polyaniline due to its wide application in different fields. In the present work nickel ferrite nanoparticles were prepared by sol-gel citrate-nitrate method. Polyaniline/nickel ferrite nanocomposites were synthesized by a simple general and inexpensive in-situ polymerization in the presence of nickel ferrite nanoparticles. The effects of nickel ferrite nanoparticles on the DC-electrical and magnetic properties of polyaniline were investigated. The structural, morphological and thermal stability of nanocomposites were characterized by X-ray diffraction, FTIR, scanning electron micrograph and TGA. The DC conductivity of polyaniline/nickel ferrite nanocomposites have been measured as a function of temperature in the range of 80K to 300K. The magnetic properties of the nanocomposites were measured using vibrating sample magnetometer in the temperature range 300-10K up to 30 kOe magnetic field.
Resumo:
An amine functionalized polyaniline (AMPANI) derivative has been grafted onto exfoliated graphite oxide (EGO). The synthesis involved the in-situ chemical oxidative polymerization of functionalized aniline monomer in the presence of EGO with diaminobenzene acting as a bridging ligand to yield EGAMPANI. The synthesized compound was characterized by FT-IR and FT-Raman spectroscopy as well as thermogravimetric and X-ray diffraction analysis. The EGAMPANI was then used to modify a carbon paste electrode (CPE), which was applied for multi-elemental sensing of Pb2+, Cd2+ and Hg2+ ions using differential pulse anodic stripping voltammetty. The limits of detection achieved using the EGAMPANI modified CPE were 22 x 10(-6) M for Hg2+ ion, 1.2 x 10(-6) M for Cd2+ ion and 9.8 x 10(-7) M for Pb2+ ion. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The electron spin resonance absorption in the synthetic metal polyaniline (PANI) doped with PTSA and its blend with poly(methylmethacrylate) (PMMA) is investigated in the temperature range between 4.2 and 300 K. The observed line shape follows Dyson's theory for a thick metallic plate with slowly diffusing magnetic dipoles. At low temperatures the line shape become symmetric and Lorentzian when the sample dimensions are small in comparison with the skin depth. The temperature dependence of electron spin relaxation time is discussed. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.
Resumo:
Silver nanoparticles are known to have bactericidal effects. A new generation of dressings incorporating antimicrobial agents like silver nanoparticles is being formulated to reduce or prevent infections. The particles can be incorporated in materials and cloth rendering them sterile. Recently, it was found that aqueous silver ions can be reduced by aqueous extract of plant parts to generate extremely stable silver nanoparticles in water. Apart from being environmentally friendly process, use of Neem leaves extract might add synergistic antibacterial effect of Neem leaves to the biosynthesized nanoparticles. With this hypothesis the biosynthetic production of silver nanoparticles by aqueous extract of Neem leaves and its bactericidal effect in cotton cloth against E. Coli were studied in this work. Silver nanoparticles were synthesized by short term (1 day) and long term (21 days) interaction of Neem extract (20% w/v) and 0.01 M AgNO3 solution in 1:4 mixing ratio. The synthesized particles were characterized by UV visible spectroscopy, transmission electron microscopy, and incorporated into cotton disks by (i) centrifuging the disks with liquid broth containing nanoparticles, (ii) in-situ coating process during synthesis, and (iii) coating with dried and purified nanoparticles. The antibacterial property of the nanoparticles coated cotton disks was studied by disk diffusion method. The effect of consecutive washing of the coated disks with distilled water on antibacterial property was also investigated. This work demonstrates the possible use of biologically synthesized silver nanoparticles by its incorporation in cloths leading them to sterilization.
Resumo:
The specific activity and content of cytochrome oxidase in the rough endoplasmic reticulum--mitochondrion complex are higher than in the mitochondrial fraction. Radiolabelling studies with the use of hepatocytes and isolated microsomal and rough endoplasmic reticulum--mitochondrion fractions, followed by immunoprecipitation with anti-(cytochrome oxidase) antibody, reveal that the nuclear-coded cytoplasmic subunits of cytochrome oxidase are preferentially synthesized in the latter fraction. The results have a bearing on the mechanism of transport of these subunits into mitochondria.
Resumo:
Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.