68 resultados para SULFIDE
em Indian Institute of Science - Bangalore - Índia
Resumo:
The growth of Thiobacillus ferrooxidans, their attachment to sulfide minerals and detachment during bacterial leaching are discussed in this paper. Growth of the bacteria has been measured by cell count of the supernatants of the mineral suspensions while attachment to minerals and detachment were measured by periodic protein estimations for both the solid and liquid phases, Even in the absence of the nutrients, bacterial growth occurs and increases the available cell population during leaching; such growth was greater in sphalerite suspensions than in galena suspensions, The bacterial attachment studies suggest that more cells are attached onto galena mineral surface than to sphalerite surface. The mechanisms of bacterial attachment and detachment are discussed.
Resumo:
A method has been developed for the removal of chromium using ferrous sulphide generated in situ. The effects of experimental parameters such as pH, reagent dosages, interference from cations and chelating agents have been investigated. Under optimum conditions, removal efficiencies of 99 and 97% for synthetic and industrial samples have been obtained. The method offers all the advantages of sulphide precipitation process and can be adopted easily for industrial effluents.
Resumo:
Oxidation of sodium sulphide to sodium thiosulphate has been experimentally investigated in a foam bed contactor using air as oxidizing medium. The var.
Resumo:
We investigate the growth kinetics of CdS nanocrystals in the quantum confinement regime using time-resolved small-angle X-ray scattering. In contrast to earlier reports for similar systems, we establish that the growth kinetics in this case follows the Lifshitz-Slyozov-Wagner theory, for not only growth of the average diameter of the nanocrystals but also the time dependence of the size distribution and the temperature dependence of the rate constant. This is the first rigorous example of the coarsening process in the quantum confinement (< 5 nm)regime. Ab initio studies for the reaction pathways provide a microscopic understanding of this finding.
Resumo:
The oxidation rate of a cuprous sulfide pellet suspended in a stream of air was followed by measuring the evolution of SO2 titrimetrically. Thin thermocouples embedded in the center of the sample recorded the variation of temperature during oxidation. The reaction was found to be topochemical and the sample temperature was found to be higher than its surroundings initially for about half an hour. After this initial period, the sample temperature decreased to that of the surroundings and remained constant during the rest of the period of over 5 hr. The apparent activation energy from the experimental data was found to be different for the initial (nonisothermal) and subsequent (isothermal) periods. Rate controlling mechanisms for these two intervals have been proposed based on interface chemical reaction, mass transfer resistance, and heat transfer concepts. Fair agreement is found between the theoretical rates based on transport mechanisms and those obtained experimentally
Resumo:
Lead sulfide (PbS) microtowers on silicon substrates, having the physical properties of bulk PbS, have been synthesized. Optical nonlinearity studies using the open aperture z-scan technique employing 5 ns and 100 fs laser pulses reveal effective two-photon type absorption. For nanosecond excitation the nonlinear absorption coefficients (beta(eff)) are in the order of 10(-11) m W-1, two orders of magnitude less than the values reported for quantum confined PbS nanocrystals. For femtosecond excitation beta(eff) is of the order of 10(-14) m W-1. These results obtained in bulk PbS experimentally confirm the importance of quantum confinement in the enhancement of optical nonlinearities in semiconductor materials.
Resumo:
Both semiempirical and ab initio calculations are reported for conformational studies of a series of alpha-substituted acetones CH3COCH2XCH3 where X = CH2, O or S and of phenacyl sulfide PhCOCH2SCH3. For conformational studies in the lowest triplet state of these molecules, the MINDO/3 method was employed in the unrestricted Hartree-Fock frame. Results reveal that rotation around a bond alpha to the carbonyl group is more favourable than that around the beta bond. The preferred conformations in the lowest triplet state are nearly the same as in the ground state.
Resumo:
Marked ball grinding tests were carried out in the laboratory using high carbon low alloy steel (cast and forged) and high chrome cast iron balls. Relative ball wear as a function of grinding period and milling conditions was evaluated for the different type of ball materials in the grinding of lead-zinc sulphide and phosphate ores. Results indicated that ball wear increased with time and showed a sharp increase for wet grinding over dry grinding. Ball wear under wet grinding conditions was also influenced by the gaseous atmosphere in the mill. The influence of oxygen on the corrosive wear of grinding balls was increasingly felt in case of sulphide ore grinding. The grinding ball materials could be arranged in the following order with respect to their overall wear resistance:
Resumo:
A heterotroph Paenibacillus polymyxa bacteria is adapted to pyrite, chalcopyrite, galena and sphalerite minerals by repeated subculturing the bacteria in the presence of the mineral until their growth characteristics became similar to the growth in the absence of mineral. The unadapted and adapted bacterial surface have been chemically characterised by zeta-potential, contact angle, adherence to hydrocarbons and FT-IR spectroscopic studies. The surface free energies of bacteria have been calculated by following the equation of state and surface tension component approaches. The aim of the present paper is to understand the changes in surface chemical properties of bacteria during adaptation to sulfide minerals and the projected consequences in bioflotation and bioflocculation processes. The mineral-adapted cells became more hydrophilic as compared to unadapted cells. There are no significant changes in the surface charge of bacteria before and after adaptation, and all the bacteria exhibit an iso-electric point below pH 2.5. The contact angles are observed to be more reliable for hydrophobicity assessment than the adherence to hydrocarbons. The Lifschitz–van der Waals/acid–base approach to calculate surface free energy is found to be relevant for mineral–bacteria interactions. The diffuse reflectance FT-IR absorbance bands for all the bacteria are the same illustrating similar surface chemical composition. However, the intensity of the bands for unadapted and adapted cells is significantly varied and this is due to different amounts of bacterial secretions underlying different growth conditions.
Resumo:
Adhesion of Thiobacillus ferrooxidans to pyrite and chalcopyrite in relation to its importance in bioleaching and bioflotation has been studied. Electrokinetic studies as well as FT-IR spectra suggest that the surface chemistry of Thiobacillus ferrooxidans depends on bacterial growth conditions. Sulfur-,Pyrite- and chalcopyrite-grown Thiobacillus ferrooxidans were found to be relatively more hydrophobic. The altered surface chemistry of Thiobacillus ferrooxidans was due to secretion of newer and specific proteinaceous compounds. The adsorption density corresponds to a monolayer coverage in a horizontal orientation of the cells. The xanthate flotation of pyrite in presence of Thiobacillus ferrooxidans is strongly depressed where as the cells have insignificant effect on chalcopyrite flotation. This study demonstrate that: (a)Thiobacillus ferrooxidans cells can be used for selective flotation of chalcopyrite from pyrite and importantly at natural pH values. (b)Sulfur-grown cells exhibits higher leaching kinetics than ferrous ion-grown cells.
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Tin (II) sulphide (SnS), a direct band gap semiconductor compound, has recently received great attention due to its unique properties. Because of low cost, absence of toxicity, and good abundance in nature, it is becoming a candidate for future multifunctional devices particularly for light conversion applications. Although the current efficiencies are low, the cost-per-Watt is becoming competitive. At room temperature, SnS exhibits stable low-symmetric, double-layered orthorhombic crystal structure, having a = 0.4329, b = 1.1192, and c = 0.3984nm as lattice parameters. These layer-structured materials are of interest in various device applications due to the arrangement of structural lattice with cations and anions. The layers of cations are separated only by van der Waals forces that provide intrinsically chemically inert surface without dangling bonds and surface density of states. As a result, there is no Fermi level pinning at the surface of the semiconductor. This fact leads to considerably high chemical and environmental stability. Further, the electrical and optical properties of SnS can be easily tailored by modifying the growth conditions or doping with suitable dopants without disturbing its crystal structure.In the last few decades, SnS has been synthesized and studied in the form of single-crystals and thin-films. Most of the SnS single-crystals have been synthesized by Bridgeman technique, whereas thin films have been developed using different physical as well as chemical deposition techniques. The synthesis or development of SnS structures in different forms including single-crystals and thin films, and their unique properties are reviewed here. The observed physical and chemical properties of SnS emphasize that this material could has novel applications in optoelectronics including solar cell devices, sensors, batteries, and also in biomedical sciences. These aspects are also discussed.