92 resultados para STRUCTURE-ACTIVITY RELATIONSHIPS
em Indian Institute of Science - Bangalore - Índia
Resumo:
Conformational energy calculations were carried out on penicillin α-and Β-sulfoxides and δ2- and δ3-cephalosporins, in order to identify the structural features governing their biological activity. Results on penicillin Β-sulfoxide indicated that in its favoured conformation, the orientation of the aminoacyl group was different from the one required for biological activity. Penicillin α sulfoxide, like penicillin sulfide, favoured two conformations of nearly equal energies, but separated by a much higher energy barrier. The reduced activity of the sulfoxides despite the nonplanarity of their lactam peptide indicated that the orientations of the aminoacyl and carboxyl groups might also govern biological activity. δ3-cephalosporins favoured two conformations of nearly equal energies, whereas δ2-cephalosporins favoured only one conformation. The lactam peptide was moderately nonplanÄr in the former, but nearly planar in the latter. The differences in the.preferred orientations of the carboxyl group between penicillins and cephalosporins were correlated with the resistance of cephalosporins to penicillinases.
Resumo:
Three series of novel glitazones were designed and prepared by using appropriate synthetic schemes to incorporate glycine, aromatic and alicyclic amines via two carbon linker. Compounds were synthesized both under conventional and microwave methods. Nineteen out of twenty four synthesized compounds were evaluated for their in vitro glucose uptake activity using isolated rat hemi-diaphragm. Compounds, 6, 9a, 13a, 13b, 13c, 13f and 13h exhibited significant glucose uptake activity. Illustration about their synthesis and in vitro glucose uptake activity is described along with the structure activity relationships. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The ability of various synthetic peptide analogs of. Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis.
Resumo:
In this study, a series of seeondary- and tertiary-amino-substituted diaryl diselenides were synthesized and studied for their glutathione peroxidase (GPx) like antioxidant activities with H2O2, cumene hydroperoxide, or tBuOOH as substrates and with PhSH or glutathione (GSH) as thiol cosubstrates. This study reveals that replacement of the tert-amino groups in benzylamine-based diselenides by sec-amino moieties drastically enhances the catalytic activities in both the aromatic thiol (PhSH) and GSH assay systems. Particularly, the N-propyl- and N-isopropylamino-substituted diselenides are 8-18 times more active than the corresponding N,N-dipropyl- and N,N-diisopropylamine-based compounds in all three peroxide systems when GSH is used as the thiol cosubstrate. Although the catalytic mechanism of sec-amino-substituted disclenides is similar to that of the tert-amine-based compounds, differences in the stability and reactivity of some of the key intermediates account for the differences in the GPx-like activities. it is observed that the sec-amino groups are better than the tert-amino moieties for generating the catalytically active selenols. This is due to the absence of any significant thiol-exchange reactions in the selenenyl sulfides derived from sec-amine-based diselenides. Furthermore, the seleninic acids (RSeO2H) derived from the sec-amine-based compounds are more stable toward further reactions with peroxides than their tert-amine-based analogues.
Resumo:
The conformationally restricted CHO-L-Met-Xxx-L-Phe-OY (where Xxx = Aib, Ac3c, Ac5c, Ac6c, and Ac7c; Y = H, Me) tripeptides, analogs of the chemoattractant CHO-L-Met-L-Leu-L-Phe-OH, have been synthesized in solution by classical methods and fully characterized. Compounds were compared to determine the combined effect of backbone conformational preferences and side-chain bulkiness on the relation of three-dimensional structure to biological activity. Each peptide was tested for its ability to induce granule enzyme secretion from rabbit peritoneal polymorphonuclear leukocytes. In parallel, a conformational analysis on the CHO-blocked peptide and their tertbutyloxycarbonylated synthetic precursors was performed in the crystal state and in solution using X-ray diffraction, infrared absorption, and 1H nuclear magnetic resonance. The biological and conformational data are discussed in relation to the proposed model of the chemotactic peptide receptor of rabbit neutrophils.
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary organization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
A series of 6,11-dihydro-11-oxodibenz[b,e]oxepin-2-acetic acids (DOAA) which are known to be anti-inflammatory agents were studied. The geometries of some of the molecules obtained from X-ray crystallography were used in the calculations as such while the geometries of their derivatives were obtained by local, partial geometry optimization around the Sites of substitution employing the AMI method, keeping the remaining parts of the geometries the same as those in the parent molecules. Molecular electrostatic potential (MEP) mapping was performed for the molecules using optimized hybridization displacement charges (HDC) combined with Lowdin charges, as this charge distribution has been shown earlier to yield near ab initio quality results. A good correlation has been found between the MEP values near the oxygen atoms of the hydroxyl groups of the carboxy groups of the molecules and their anti-inflammatory activities. The result is broadly in agreement with the model proposed earlier by other authors regarding the structure-activity relationship for other similar molecules.
Resumo:
X-ray diffraction studies on single crystals of a few viruses have led to the elucidation of their three dimensional structure at near atomic resolution. Both the tertiary structure of the coat protein subunit and the quaternary morganization of the icosahedral capsid in these viruses are remarkably similar. These studies have led to a critical re-examination of the structural principles in the architecture of isometric viruses and suggestions of alternative mechanisms of assembly. Apart from their role in the assembly of the virus particle, the coat proteins of certian viruses have been shown to inhibit the replication of the cognate RNA leading to cross-protection. The coat protein amino acid sequence and the genomic sequence of several spherical plant RNA viruses have been determined in the last decade. Experimental data on the mechanisms of uncoating, gene expression and replication of several classes of viruses have also become available. The function of the non-structural proteins of some viruses have been determined. This rapid progress has provided a wealth of information on several key steps in the life cycle of RNA viruses. The function of the viral coat protein, capsid architecture, assembly and disassembly and replication of isometric RNA plant viruses are discussed in the light of this accumulated knowledge.
Resumo:
Iron(III) complexes FeL(B)] (1-5) of a tetradentate trianionic phenolate-based ligand (L) and modified dipyridophenazine bases (B), namely, dipyrido-6,7,8,9-tetrahydrophenazine (dpqC in 1), dipyrido3,2-a:2',3'-c]phenazine-2-carboxylic acid (dppzc in 2), dipyrido3,2-a:2',3'-c]phenazine-11-sulfonic acid (dppzs in 3), 7-aminodipyrido3,2-a:2',3'-c]phenazine (dppza in 4) and benzoi]dipyridro3,2-a:2',3'-c]phenazine (dppn in 5), have been synthesized, and their photocytotoxic properties studied along with their dipyridophenazine analogue (6). The complexes have a five. electron paramagnetic iron(III) center, and the Fe(III)/Fe(II) redox couple appears at about 0.69 V versus SCE in DMF-0.1 M TBAP. The physicochemical data also suggest that the complexes possess similar structural features as that of its parent complex FeL(dppz)] with FeO3N3 coordination in a distorted octahedral geometry. The DNA-complex and protein-complex interaction studies have revealed that the complexes interact favorably with the biomolecules, the degree of which depends on the nature of the substituents present on the dipyridophenazine ring. Photocleavage Of pUC19 DNA by the complexes has been studied using visible light of 476, 530, and 647 nm wavelengths. Mechanistic investigations with inhibitors show formation of HO center dot radicals via a photoredox pathway. Photocytotoxicity study of the complexes in HeLa cells has shown that the dppn complex (5) is highly active in causing cell death in visible light with sub micromolar IC50 value. The effect of substitutions and the planarity of the phenazine moiety on the cellular uptake are quantified by determining the total Cellular iron content using the inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The cellular uptake increases marginally with an increase in the hydrophobicity of the dipyridophenazine ligands whereas complex 3 with dppzs shows very high uptake. Insights into the cell death mechanism by the dppn complex 5, obtained through DAFT nuclear staining in HeLa cells, reveal a rapid programmed cell death mechanism following photoactivation of complex 5 with visible light. The effect of substituent on the DNA photocleavage activity of the complexes has been rationalized from the theoretical studies.
Resumo:
Ligand-induced stabilization of G-quadruplex structures formed by the human telomeric DNA is an active area of research. The compounds which stabilize the G-quadruplexes often lead to telomerase inhibition. Herein we present the results of interaction of new monomeric and dimeric ligands having 1,3-phenylene-bis(piperazinyl benzimidazole) unit with G-quadruplex DNA (G4DNA) formed by human telomeric repeat d(G(3)T(2)A)(3)G(3)]. These ligands efficiently stabilize the preformed G4DNA in the presence of 100 mM monovalent alkali metal ions. Also, the G4DNA formed in the presence of low concentrations of ligands in 100 mM K+ adopts a highly stable parallel-stranded conformation. The G-quadruplexes formed in the presence of the dimeric compound are more stable than that induced by the corresponding monomeric counterpart. The dimeric ligands having oligo-oxyethylene spacers provide much higher stability to the preformed G4DNA and also exert significantly higher telomerase inhibition activity. Computational aspects have also been discussed.
Resumo:
The last few decades have witnessed application of graph theory and topological indices derived from molecular graph in structure-activity analysis. Such applications are based on regression and various multivariate analyses. Most of the topological indices are computed for the whole molecule and used as descriptors for explaining properties/activities of chemical compounds. However, some substructural descriptors in the form of topological distance based vertex indices have been found to be useful in identifying activity related substructures and in predicting pharmacological and toxicological activities of bioactive compounds. Another important aspect of drug discovery e. g. designing novel pharmaceutical candidates could also be done from the distance distribution associated with such vertex indices. In this article, we will review the development and applications of this approach both in activity prediction as well as in designing novel compounds.
Resumo:
We report on the first chemical syntheses and structureactivity analyses of the cyclic lipopeptide battacin which revealed that conjugation of a shorter fatty acid, 4-methyl-hexanoic acid, and linearization of the peptide sequence improves antibacterial activity and reduces hemolysis of mouse blood cells. This surprising finding of higher potency in linear lipopeptides than their cyclic counterparts is economically beneficial. This novel lipopeptide was membrane lytic and exhibited antibiofilm activity against Pseudomonas aeruginosa, Staphylococcus aureus, and, for the first time, Pseudomonas syringe pv. actinidiae. The peptide was unstructured in aqueous buffer and dimyristoylphosphatidylcholine-polymerized diacetylene vesicles, with 12% helicity induced in 50% v/v of trifluoroethanol. Our results indicate that a well-defined secondary structure is not essential for the observed antibacterial activity of this novel lipopeptide. A truncated pentapeptide conjugated to 4-methyl hexanoic acid, having similar potency against Gram negative and Gram positive pathogens was identified through alanine scanning.
Resumo:
The extremities of chromosomes end in a G-rich single-stranded overhang that has been implicated in the onset of the replicate senescence. The repeated sequence forming a G-overhang is able to adopt a four-stranded DNA structure called G-quadruplex, which is a poor substrate for the enzyme telomerase. Small molecule based ligands that selectively stabilize the telomeric G-quadruplex DNA, induce telomere shortening eventually leading to cell death. Herein, we have investigated the G-quadruplex DNA interaction with two isomeric bisbenzimidazole-based compounds that differ in terms of shape (V-shaped angular vs linear).While the linear isomer induced some stabilization of the intramolecular G-quadruplex structure generated in the presence of Na+ the other, having V-shaped central planar core, caused a dramatic structural alteration of the latter, above a threshold concentration. This transition was evident from the pronounced changes observed in the circular dichroism spectra and from the get mobility shift assa involving the G-quadruples DNA. Notably, this angular isomer could also induce the G-quadruplex formation in the absence of any added cation. The ligand-quadruples complexes were investigated by computational molecular modeling, providing further information on structure-activity relationships. Finally, TRAP (telomerase repeat amplification protocol) experiments demonstrated that the angular isomer is selective toward the inhibition of telomerase activity.