114 resultados para STRAIN-INDUCED CRYSTALLIZATION

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Irreversible, Pressure induced, quasicrystal-to-crystal transitions are observed for the first time in melt spun alloys at 4.9 GPa for Al 78 Mn22 and 9.3 GPa for Al86 Mn14 by monitoring the electrical resistivities of these alloys as a function of pressure. Electron diffraction and x-ray measurements are used to show that these quasicrystalline phases have icosohedral point group symmetry. The crystalline phases which appear at high pressures are identified as h.c.p. for Al78 Mn22 and orthorhombic for Al86 Mn14.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of phases showing icosahedral point symmetry was reported by Shechtman, Blech, Gratias and Cahn in rapidly quenched alloys of Al---Mn, Al---Fe and Al---Cr, and subsequently many other splat-cooled alloys with the i phase have been reported. In this paper we present the first results of high pressure experiments carried out on Al---Fe and Al---Mn quasi-crystals. The experiments performed at room temperature showed irreversible quasi-crystal-to-crystal transitions in Al---Mn and Al---Fe alloys. The transition pressures are 49 kbar for Al78Mn22, 93 kbar for Al86Mn14, 79 kbar for Al86Fe14, 54 kbar for Al82Fe18 and 108 kbar for Al75Fe25. The high pressure phases are found to be the equilibrium phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of biaxial strain on local electrical/electronic properties in thin films of La0.7Ca0.3MnO3 with varying degrees of biaxial strain in them. The local electrical properties were investigated as a function of temperature by scanning tunneling spectroscopy (STS) and scanning tunneling potentiometry (STP), along with the bulk probe like conductance fluctuations.The results indicate a positive correlation between the lattice mismatch biaxial strain and the local electrical/electronic inhomogenities observed in the strained sample. This is plausible since the crystal structure of the manganites interfere rather strongly with the magnetic/electronic degrees of freedom. Thus even a small imbalance (biaxial strain) can induce significant changes in the electrical properties of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using all-atom molecular dynamics simulation, we have studied the effect of size and temperature on the strain induced phase transition of wurtzite CdSe nanowires. The wurtzite structure transforms into a five-fold coordinated structure under uniaxial strain along the c axis. Our results show that lower temperature and smaller size of the nanowires stabilize the five-fold coordinated phase which is not a stable structure in bulk CdSe. High reversibility of this transformation with a very small heat loss will make these nanowires suitable for building efficient nanodevices. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4734990]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the monotonic increase and the oscillation of electrical conductance in multiwalled carbon nanotubes with compressive strain. Combined experimental and theoretical analyses confirm that the conductance variation with strain is because of the transition from sp(2) to configurations that are promoted by the interaction of walls in the nanotubes. The intrawall interaction is the reason for the monotonic increase in the conduction, while the oscillations are attributable to interwall interactions. This explains the observed electromechanical oscillation in multiwalled nanotubes and its absence in single-walled nanotubes, thereby resolving a long-standing debate on the interpretation of these results. Moreover, the current carrying capability of nanotubes can be enhanced significantly by controlling applied strains. DOI: 10.1103/PhysRevLett.110.095504

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate a unique shear-induced crystallization phenomenon above the equilibrium freezing temperature (T-K(o)) in weakly swollen isotropic (L-i) and lamellar (L-alpha) mesophases with bilayers formed in a cationic-anionic mixed surfactant system. Synchrotron rheological X-ray diffraction study reveals the crystallization transition to be reversible under shear (i.e., on stopping the shear, the nonequilibrium crystalline phase L-c melts back to the equilibrium mesophase). This is different from the shear-driven crystallization below T-K(o), which is irreversible. Rheological optical observations show that the growth of the crystalline phase occurs through a preordering of the L-i phase to an L-alpha phase induced by shear flow, before the nucleation of the Lc phase. Shear diagram of the L-i phase constructed in the parameter space of shear rate ((gamma)) over dot vs. temperature exhibits L-i -> L-c and L-i -> L-alpha transitions above the equilibrium crystallization temperature (T-K(o)), in addition to the irreversible shear-driven nucleation of L-c in the L-i phase below T-K(o). In addition to revealing a unique class of nonequilibrium phase transition, the present study urges a unique approach toward understanding shear-induced phenomena in concentrated mesophases of mixed amphiphilic systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear induced crystallization in PVDF/PMMA blends, especially at higher fractions of PMMA, can be quite interesting in understanding the structure-property correlation and processing of these blends. In a recent submission (Phys. Chem. Chem. Phys., 2014, 16, 2693-2704), we clearly demonstrated, using dielectric spectroscopy, that the origin of segmental relaxations concerning the crystalline segments of PVDF in PVDF/PMMA blends in the presence of MWNTs (multiwalled nanotubes) was strongly contingent on the size of the crystallite. We now understand that the fraction of PMMA in the blends governs the origin of polymorphism in PVDF. This motivated us to systematically study the effect of shear on the crystallization behavior of PVDF especially in blends with different polymorphic forms of PVDF. Two model blends were selected; one with a mixture of alpha and beta crystals and the other predominantly rich in alpha crystals. Initially, physical ageing, at different oscillation frequencies (1 rad s(-1) and 0.1 rad s(-1)), was monitored by melt rheology and subsequently, the effect of steady shear was probed in situ without changing the history of the samples. Intriguingly, the rate of crystallization was observed to be significantly higher for higher oscillation frequencies, which essentially suggest that shear has induced crystallization in the blends. More interestingly, the effect of steady shear was more pronounced in the blends rich in alpha crystals (bigger crystallites as observed from SAXS) and at lower oscillation frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles density functional theory calculations, we show a semimetal to semiconducting electronic phase transition for bulk TiS2 by applying uniform biaxial tensile strain. This electronic phase transition is triggered by charge transfer from Ti to S, which eventually reduces the overlap between Ti-(d) and S-(p) orbitals. The electronic transport calculations show a large anisotropy in electrical conductivity and thermopower, which is due to the difference in the effective masses along the in-plane and out-of-plane directions. Strain-induced opening of band gap together with changes in dispersion of bands lead to threefold enhancement in thermopower for both p-and n-type TiS2. We further demonstrate that the uniform tensile strain, which enhances the thermoelectric performance, can be achieved by doping TiS2 with larger iso-electronic elements such as Zr or Hf at Ti sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aside of size and shape, the strain induced by the mismatch of lattice parameters between core and shell in the nanocrystalline regime is an additional degree of freedom to engineer the electron energy levels. Herein, CdS/ZnS core/shell nanocrystals (NCs) with shell thickness up to four monolayers are studied. As a manifestation of strain, the low temperature radiative lifetime measurements indicate a reduction in Stokes shift from 36 meV for CdS to 5 meV for CdS/ZnS with four monolayers of overcoating. Concomitant crossover of S- and P-symmetric hole levels is observed which can be understood in the framework of theoretical calculations predicting flipping the hierarchy of ground hole state by the strain in CdS NCs. Furthermore, a nonmonotonic variation of higher energy levels in strained CdS NCs is discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa-1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz(-1) at a constant small-amplitude vibration and up to 0.13%/mu-strain at 0-500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of pressure on the electrical resistivity of bulk Si20Te80 glass is reported. Results of calorimetric, X-ray and transmission electron microscopy investigations at different stages of crystallization of bulk Si20Te80 glass are also presented. A pressure induced glass-to-crystal transition occurs at a pressure of 7 GPa. Pressure and temperature dependence of the electrical resistivity of Si20Te80 glass show the observed transition is a pressure induced glassy semiconductor to crystalline metal transition. The glass also exhibits a double Tg effect and double stage crystallization, under heating. The differences between the temperature induced crystallization (primary crystallization) and pressure induced congruent crystallization are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this letter we characterize strain in Si1-xGex based heterojunction bipolar transistors and modulation doped field effect transistors grown by rapid thermal chemical vapor deposition exploiting the phenomenon of strain-induced birefringence. The technique used is multiple angle of incidence ellipsometry at a wavelength of 670 nm to measure the ordinary and extraordinary refractive indices of the Si1-xGex films. We report measurements on thin fully strained films (with thicknesses less than the critical thickness) with Ge concentration varying from 9% to 40% with an accuracy of the order of 1 part in 10(4) and propose an empirical relation between the difference in the ordinary and extraordinary refractive indices (deltan) and the Ge concentration (x) given by deltan(x)=0.18x-0.12x(2). (C) 2000 American Institute of Physics. [S0003-6951(00)03948-6].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pressure-induced phase transformations (PIPTs) occur in a wide range of materials. In general, the bonding characteristics, before and after the PIPT, remain invariant in most materials, and the bond rearrangement is usually irreversible due to the strain induced under pressure. A reversible PIPT associated with a substantial bond rearrangement has been found in a metal-organic framework material, namely tmenH(2)]Er(HCOO)(4)](2) (tmenH(2)(2+) = N,N,N',N'-tetramethylethylenediammonium). The transition is first-order and is accompanied by a unit cell volume change of about 10%. High-pressure single-crystal X-ray diffraction studies reveal the complex bond rearrangement through the transition. The reversible nature of the transition is confirmed by means of independent nanoindentation measurements on single crystals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Single crystals of LaMn0.5Co0.5O3 belonging to the ferromagnetic-insulator and distorted perovskite class were grown using a four-mirror optical float zone furnace. The as-grown crystal crystallizes into an orthorhombic Pbnm structure. The spatially resolved 2D Raman scan reveals a strain-induced distribution of transition metal (TM)-oxygen (O) octahedral deformation in the as-grown crystal. A rigorous annealing process releases the strain, thereby generating homogeneous octahedral distortion. The octahedra tilt by reducing the bond angle TM-O-TM, resulting in a decline of the exchange energy in the annealed crystal. The critical behavior is investigated from the bulk magnetization. It is found that the ground state magnetic behavior assigned to the strain-free LaMn0.5Co0.5O3 crystal is of the 3D Heisenberg kind. Strain induces mean field-like interaction in some sites, and consequently, the critical exponents deviate from the 3D Heisenberg class in the as-grown crystal. The temperature-dependent Raman scattering study reveals strong spin-phonon coupling and the existence of two magnetic ground states in the same crystal. (C) 2014 AIP Publishing LLC.